Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells

Michael E. Miller | Lindsay C. Page | Kevin S. Smith | Charles R. Evans | Aliza B. Rubenstein | R. Tibshirani | T. Hastie | M. Rivas | A. Raja | W. Kraus | E. Ashley | J. Fleg | E. Ravussin | M. Wheeler | S. Sealfon | B. Balliu | T. Lappalainen | W. Ambrosius | S. Montgomery | A. Newman | E. Melanson | B. Nicklas | M. Pahor | K. Moreau | M. Lindholm | S. Espinoza | Laurent Frésard | R. Gerszten | K. Esser | M. Gritsenko | G. Cutter | T. Rankinen | E. Ortlund | B. Goodpaster | Michael P. Snyder | Nicole R. Gay | Ashley Xia | B. Bergman | J. Christle | C. Clish | D. Mani | K. Uppal | E. Zaslavsky | J. Adkins | W. Qian | C. Nierras | V. Petyuk | G. Nudelman | J. Jakicic | O. Ilkayeva | C. Newgard | P. Piehowski | W. Kohrt | J. Mcdermott | K. Krug | S. Marwaha | R. Farrar | Johanna L. Johnson | C. Slentz | K. Huffman | R. Rogers | P. Vanderboom | D. Alekel | Melissa Harris | C. Jankowski | T. Trappe | S. Bodine | E. Volpi | B. Rasmussen | L. Goodyear | N. Musi | M. Hirshman | J. Drugan | M. Muehlbauer | S. Boulant | M. Cortese | M. Stanifer | M. Walsh | J. Houmard | D. Amar | Tanu Soni | S. Rushing | C. Evans | B. Nindl | N. Johannsen | T. Buford | Bingqing Zhao | A. Raskind | S. Moore | D. Gaul | J. Avila-Pacheco | Hasmik Keshishian | J. Gelfond | D. Jimenez-Morales | N. Broskey | S. Schenk | T. Moro | Josephine E. A. Boyington | P. Maruvada | Side Li | Yifei Sun | L. Sparks | C. Dennis | M. Bamman | S. Hershman | V. Nair | Frederique Ruf-Zamojski | I. Schauer | D. Cooper | M. Laughlin | P. Coen | Lyndon Joseph | S. Radom-Aizik | Gregory R. Smith | E. Kershaw | C. Burant | D. Paddon-Jones | M. Kachman | E. Cornell | M. Stefanovic-Racic | Christopher D. Nogiec | U. Raue | Leslie H. Willis | J. Robbins | Markus Mukenhirn | I. Lanza | J. Sanford | Bridget E. Lester | F. Haddad | Gabriel S. Dubis | Amanda T. Boyce | Charlie Mundorff | R. Tracy | Carmon Kee | Brent G. Albertson | Yafeng Li | Jun Z Li | Scott Trappe | W. J. Rejeski | M. Kellis | Facundo M. Fernández | Dan Forman | K. Klaus | T. Alexandrov | A. Burns | K. Maner-Smith | J. Rooney | Anna A. Ivanova | C. Stowe | Brunilda Balliu | Surendra Dasari | Lyl Tomlinson | I. Bekirov | S. A. Morris | J. McGowan | Vinay S. Pai | Charlotte A. Peterson | Edmund P. Ramos | M. Roary | John P. Williams | Ching-ju Lu | Toby L. Chambers | David H. Bessesen | R. S. Schwartz | L. Kelly | Susan Barr | H. Spratt | Darpan I Patel | M. Serra | Matthew E. Monore | Joshua Hansen | C. Hutchison | Steve Carr | Pierre M. Jean-Beltran | K. Clauser | Cadence Pearce | Tiantian Zhang | Nimisha Jain | Y. Ge | Nhanna Pincas | M. A. Amper | Nitish Seenarine | K. Nair | Chia-Jiu Hung | Navid Zebarjadi | Karen P Dalton | Jimmy Zhen | Young Suk Kim | Elizabeth T. Chin | Camila Metz Zumaran | P. Jean-Beltran | J. Ávila-Pacheco | Karen P. Dalton | H.-G. Kraeusslich | Jeremy M. Robbins | F. Ruf-Zamojski | A. Rubenstein | M. Stefanovic‐Racic | C. Peterson | Katherine A. Klaus | Jun Z. Li | Karsten Krug | Cynthia L. Stowe | Alexander Raskind | W. Rejeski | L. Frésard | Stephanie A. Morris | Sergio Triana | Kristal M. Maner-Smith | Mary C. Roary | A. Newman | R. Bartenschlager

[1]  Hans Clevers,et al.  SARS-CoV-2 productively infects human gut enterocytes , 2020, Science.

[2]  Dong Yang,et al.  Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[3]  Roland Eils,et al.  SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells , 2020, The EMBO journal.

[4]  P. Vollmar,et al.  Virological assessment of hospitalized patients with COVID-2019 , 2020, Nature.

[5]  W. Ni,et al.  Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019 , 2020, Journal of Microbiology, Immunology and Infection.

[6]  Sunny H Wong,et al.  Covid‐19 and the digestive system , 2020, Journal of gastroenterology and hepatology.

[7]  H. Shan,et al.  Prolonged presence of SARS-CoV-2 viral RNA in faecal samples , 2020, The Lancet Gastroenterology & Hepatology.

[8]  Huiying Liang,et al.  Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding , 2020, Nature Medicine.

[9]  R. Lu,et al.  Detection of SARS-CoV-2 in Different Types of Clinical Specimens. , 2020, JAMA.

[10]  Vineet D. Menachery,et al.  Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV , 2020, Journal of Virology.

[11]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[12]  Taiwen Li,et al.  High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa , 2020, International Journal of Oral Science.

[13]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[14]  W. Zuo,et al.  Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov , 2020, bioRxiv.

[15]  Catharine I Paules,et al.  Coronavirus Infections-More Than Just the Common Cold. , 2020, JAMA.

[16]  Hongzhou Lu,et al.  Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle , 2020, Journal of medical virology.

[17]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[18]  K. Deighton,et al.  Non-targeted metabolomics in sport and exercise science , 2019, Journal of sports sciences.

[19]  P. Staeheli,et al.  Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin , 2019, Nature Immunology.

[20]  Ángel García,et al.  Application of Extracellular Vesicles Proteomics to Cardiovascular Disease: Guidelines, Data Analysis, and Future Perspectives , 2019, Proteomics.

[21]  Dianna Gellar single cell rna sequencing , 2019 .

[22]  Zhènglì Shí,et al.  Origin and evolution of pathogenic coronaviruses , 2018, Nature Reviews Microbiology.

[23]  K. Garcia,et al.  Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance , 2018, PLoS pathogens.

[24]  L. Goodyear,et al.  Muscle-Adipose Tissue Cross Talk. , 2018, Cold Spring Harbor perspectives in medicine.

[25]  D. James,et al.  Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training , 2018, Scientific Reports.

[26]  Ronald J. Moore,et al.  Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry , 2018, Nature Protocols.

[27]  M. Tarnopolsky,et al.  Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. , 2018, Cold Spring Harbor perspectives in medicine.

[28]  D. James,et al.  Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. , 2018, Cell metabolism.

[29]  P. Soares,et al.  A compendium of physical exercise-related human genes: an ’omic scale analysis , 2017, Biology of sport.

[30]  Anshul Kundaje,et al.  Challenges and recommendations for epigenomics in precision health , 2017, Nature Biotechnology.

[31]  Z. Memish,et al.  Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus , 2017, Science Advances.

[32]  F. Booth,et al.  Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. , 2017, Physiological reviews.

[33]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[34]  S. Powers,et al.  Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training , 2017, PloS one.

[35]  Jennifer Tetzlaff,et al.  Knowledge Synthesis , 2017, Encyclopedia of GIS.

[36]  M. Binder,et al.  Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF‐β dependent pro‐survival signaling , 2016, Cellular microbiology.

[37]  M. Tomita,et al.  Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men , 2016, PloS one.

[38]  C. Matthews,et al.  Objectively measured physical activity and plasma metabolomics in the Shanghai Physical Activity Study. , 2016, International journal of epidemiology.

[39]  D. Graham,et al.  Replication of human noroviruses in stem cell–derived human enteroids , 2016, Science.

[40]  Sun Kim,et al.  Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways , 2016, Bioinform..

[41]  P. Żmijewski,et al.  Genetic variants influencing effectiveness of exercise training programmes in obesity – an overview of human studies , 2016, Biology of sport.

[42]  D. Cooper,et al.  Bridging the Gaps: the Promise of Omics Studies in Pediatric Exercise Research. , 2016, Pediatric exercise science.

[43]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[44]  Nolan J Hoffman,et al.  Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. , 2015, Cell metabolism.

[45]  Leyi Wang,et al.  Animal Coronaviruses: A Brief Introduction , 2015, Animal Coronaviruses.

[46]  Claude Bouchard,et al.  Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. , 2015, Cell metabolism.

[47]  Ron Shamir,et al.  A hierarchical Bayesian model for flexible module discovery in three-way time-series data , 2015, Bioinform..

[48]  C. Bouchard,et al.  Advances in exercise, fitness, and performance genomics in 2014. , 2015, Medicine and science in sports and exercise.

[49]  V. Lohmann,et al.  Ultrastructure of the replication sites of positive-strand RNA viruses , 2015, Virology.

[50]  J. Tegnér,et al.  An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training , 2014, Epigenetics.

[51]  J. Hawley,et al.  Integrative Biology of Exercise , 2014, Cell.

[52]  Chunaram Choudhary,et al.  The growing landscape of lysine acetylation links metabolism and cell signalling , 2014, Nature Reviews Molecular Cell Biology.

[53]  D. Cooper,et al.  Impact of brief exercise on circulating monocyte gene and microRNA expression: Implications for atherosclerotic vascular disease , 2014, Brain, Behavior, and Immunity.

[54]  C. Ling,et al.  Epigenetic adaptation to regular exercise in humans. , 2014, Drug discovery today.

[55]  M. Meaney,et al.  Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. , 2014, American journal of physiology. Regulatory, integrative and comparative physiology.

[56]  K. Eriksson,et al.  Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6‐month exercise intervention , 2014, Acta physiologica.

[57]  Ron Shamir,et al.  Constructing module maps for integrated analysis of heterogeneous biological networks , 2014, Nucleic acids research.

[58]  C. Ling,et al.  Effect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscle. , 2013, Epigenomics.

[59]  M. Albert,et al.  Type I and Type III Interferons Drive Redundant Amplification Loops to Induce a Transcriptional Signature in Influenza-Infected Airway Epithelia , 2013, PLoS pathogens.

[60]  Andrew M. Gross,et al.  Network-based stratification of tumor mutations , 2013, Nature Methods.

[61]  M. Lila,et al.  Influence of a Polyphenol-Enriched Protein Powder on Exercise-Induced Inflammation and Oxidative Stress in Athletes: A Randomized Trial Using a Metabolomics Approach , 2013, PloS one.

[62]  D. Cooper,et al.  Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. , 2013, Journal of applied physiology.

[63]  J. Zierath,et al.  Exercise metabolism and the molecular regulation of skeletal muscle adaptation. , 2013, Cell metabolism.

[64]  Lenore Cowen,et al.  Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data , 2012, BMC Bioinformatics.

[65]  Ziv Bar-Joseph,et al.  DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data , 2012, BMC Systems Biology.

[66]  Ulrika Raue,et al.  Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. , 2012, Journal of applied physiology.

[67]  M. Febbraio,et al.  Muscles, exercise and obesity: skeletal muscle as a secretory organ , 2012, Nature Reviews Endocrinology.

[68]  D. O'Gorman,et al.  Acute exercise remodels promoter methylation in human skeletal muscle. , 2012, Cell metabolism.

[69]  M. Gulisano,et al.  Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. , 2012, Journal of proteomics.

[70]  Christoph H. Emmerich,et al.  The Emerging Role of Linear Ubiquitination in Cell Signaling , 2011, Science Signaling.

[71]  P. Farinatti,et al.  The effect of Between-Set Rest Intervals on the Oxygen Uptake During and After Resistance Exercise Sessions Performed with Large- and Small-Muscle Mass , 2011, Journal of strength and conditioning research.

[72]  C. Bouchard,et al.  Genomics and genetics in the biology of adaptation to exercise. , 2011, Comprehensive Physiology.

[73]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[74]  M. Hornef,et al.  IFN-λ determines the intestinal epithelial antiviral host defense , 2011, Proceedings of the National Academy of Sciences.

[75]  Claude Bouchard,et al.  Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. , 2010, Journal of applied physiology.

[76]  S. Carr,et al.  Metabolic Signatures of Exercise in Human Plasma , 2010, Science Translational Medicine.

[77]  C. Bouchard,et al.  Advances in exercise, fitness, and performance genomics. , 2010, Medicine and science in sports and exercise.

[78]  K. Lange,et al.  Prioritizing GWAS results: A review of statistical methods and recommendations for their application. , 2010, American journal of human genetics.

[79]  H. Hauser,et al.  Novel bioassays for mouse type I and type III interferons , 2009 .

[80]  U. Jakob,et al.  Thiol-based redox switches in eukaryotic proteins. , 2009, Antioxidants & redox signaling.

[81]  J. Burniston Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. , 2008, Biochimica et biophysica acta.

[82]  John McLauchlan,et al.  Visualization of Double-Stranded RNA in Cells Supporting Hepatitis C Virus RNA Replication , 2007, Journal of Virology.

[83]  S. Trappe,et al.  Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. , 2007, Journal of applied physiology.

[84]  B. Hammock,et al.  Mass spectrometry-based metabolomics. , 2007, Mass spectrometry reviews.

[85]  D. Warburton,et al.  Health benefits of physical activity: the evidence , 2006, Canadian Medical Association Journal.

[86]  A. Smilde,et al.  Fusion of mass spectrometry-based metabolomics data. , 2005, Analytical chemistry.

[87]  C. Wild Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology , 2005, Cancer Epidemiology Biomarkers & Prevention.

[88]  S. Trappe,et al.  Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. , 2005, Journal of applied physiology.

[89]  Krishna Shankara Narayanan,et al.  Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication , 2005, Journal of Virology.

[90]  D. Williamson,et al.  Immediate Response of Mammalian Target of Rapamycin (mTOR)‐Mediated Signalling Following Acute Resistance Exercise in Rat Skeletal Muscle , 2003, The Journal of physiology.

[91]  I. Wilson,et al.  Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism , 2003, Nature Reviews Drug Discovery.

[92]  B. Saltin,et al.  Production of interleukin‐6 in contracting human skeletal muscles can account for the exercise‐induced increase in plasma interleukin‐6 , 2000, The Journal of physiology.

[93]  J. Bülow,et al.  Post‐exercise adipose tissue and skeletal muscle lipid metabolism in humans: the effects of exercise intensity , 2000, The Journal of physiology.

[94]  R. Wolfe,et al.  Mixed muscle protein synthesis and breakdown after resistance exercise in humans. , 1997, The American journal of physiology.

[95]  T. Hunter,et al.  Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling , 1995, Cell.

[96]  J A Romijn,et al.  Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. , 1993, The American journal of physiology.

[97]  M. Kjaer,et al.  Influence of active muscle mass on glucose homeostasis during exercise in humans. , 1991, Journal of applied physiology.

[98]  W. Kohrt,et al.  Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. , 1990, Journal of applied physiology.

[99]  R. Armstrong,et al.  Effect of training on enzyme activity and fiber composition of human skeletal muscle. , 1973, Journal of applied physiology.