Mapping and localization using surround view

Intelligent vehicles heavily rely on robust and accurate self-localization. Global navigation satellite systems (GNSS) are not reliable in urban environments due to multipath and shadowing effects. Vision-based localization offers a promising alternative. We present a high-precision six degrees of freedom self-localization method using multiple cameras covering the surrounding environment. First, a point feature map is created using images from a previous pass of the area to map. Thereafter, the map is used for high-precision localization in real-time. While localization, a rough prior estimate of the current pose is used to shrink the search space for feature matching by projecting mapped landmarks into current images. Then, stored observations of the projected landmarks are matched to actual observations and the egopose is estimated by back-projection error minimization. Thereby, our map structure provides mapped landmarks efficiently towards localization with multiple cameras. In real-world experiments we show that our approach provides reliable localization results while passing the mapped area in arbitrary orientation.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Supun Samarasekera,et al.  Sub-meter vehicle navigation using efficient pre-mapped visual landmarks , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[3]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  Henning Lategahn,et al.  Vision-Only Localization , 2014, IEEE Transactions on Intelligent Transportation Systems.

[5]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[6]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[7]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[8]  Christoph Gustav Keller,et al.  Multi trajectory pose adjustment for life-long mapping , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[9]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[10]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[11]  Julius Ziegler,et al.  Making Bertha Drive—An Autonomous Journey on a Historic Route , 2014, IEEE Intelligent Transportation Systems Magazine.

[12]  Andrew Zisserman,et al.  Multiple View Geometry , 2009, Encyclopedia of Biometrics.

[13]  Tobias Strauss Kalibrierung von Multi-Kamera-Systemen - Kombinierte Schätzung von intrinsischem Abbildungsverhalten der einzelnen Kameras und deren relativer Lage zueinander ohne Erfordernis sich überlappender Sichtbereiche , 2015 .

[14]  Henning Lategahn,et al.  DIRD is an illumination robust descriptor , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[15]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[16]  Markus Schreiber,et al.  LaneLoc: Lane marking based localization using highly accurate maps , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[17]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  Christoph Stiller,et al.  Velodyne SLAM , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[19]  Takeo Kanade,et al.  Visual topometric localization , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[20]  Julius Ziegler,et al.  Video based localization for Bertha , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.