Solving Multi-criteria Optimization Problems with Population-Based ACO

In this paper a Population-based Ant Colony Optimization approach is proposed to solve multi-criteria optimization problems where the population of solutions is chosen from the set of all non-dominated solutions found so far. We investigate different maximum sizes for this population. The algorithm employs one pheromone matrix for each type of optimization criterion. The matrices are derived from the chosen population of solutions, and can cope with an arbitrary number of criteria. As a test problem, Single Machine Total Tardiness with changeover costs is used.

[1]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[3]  É. Taillard,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[4]  C. Mariano,et al.  MOAQ an Ant-Q algorithm for multiple objective optimization problems , 1999 .

[5]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[7]  Marc Gravel,et al.  Scheduling a single machine where setup times are sequence dependent using an ant colony heuristic , 2000 .

[8]  Hartmut Schmeck,et al.  Pheromone evaluation in Ant Colony Optimization , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[9]  Daniel Merkle,et al.  An Ant Algorithm with a New Pheromone Evaluation Rule for Total Tardiness Problems , 2000, EvoWorkshops.

[10]  Richard F. Hartl,et al.  Cooperative Ant Colonies for Optimizing Resource Allocation in Transportation , 2001, EvoWorkshops.

[11]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.

[12]  R. Hartl,et al.  Are COMPETants more competent for problem solving? The case of a multiple objective transportation problem. , 2001 .

[13]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[14]  Karl F. Doerner,et al.  Investitionsentscheidungen bei mehrfachen Zielsetzungen und kunstliche Ameisen , 2002 .

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[16]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[17]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[18]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..