Konzepte für den Roboterassistenten der Zukunft

Zusammenfassung Die Realisierung eines sensorbasierten Roboterassistenten, der es ermöglicht Mensch und Roboter im industriellen Umfeld intenisiv kooperieren zu lassen ist ein wichtiges Ziel der Robotik. In diesem Beitrag wird ein Konzept für einen Roboterassistenten vorgestellt und anhand einer Beispielanwendung, dem Griff-in-die-Kiste, demonstriert. Dabei werden verfügbare Standardkomponenten benutzt, um aufzuzeigen, dass der Stand-der-Technik bereits weit genug ist derart komplexe Szenarien zu realisieren. Es werden sensorbasierte Reaktionsstrategien zur sicheren Mensch-Roboter Interaktion in ein zustandsbasiertes Roboterverhalten integriert und des Weiteren benutzt, um die nötige Robustheit für partiell unstrukturierte Umgebungen zu erlangen. Der Griff-in-die-Kiste wird an einem DLR Leichtbauroboter III (LBR-III) validiert, der mit dem DLR 3D-Modeller zur Generierung von Umgebungsmodelle und einer Time-of-Flight Kamera zur Objekterkennung ausgestattet ist. Abstract The realization of a sensor based robotic co-worker that brings robots closer to humans in industrial settings and achieve close cooperation is an important goal in robotics. In this paper a solid concept and a prototype realization of a co-worker scenario are developed in order to demonstrate that state-of-the-art technology is now mature enough to reach this aspiring aim. We support our ideas by addressing the industrially relevant bin-picking problem with the DLR Lightweight Robot (LWR-III), which is equipped with a Time-of-Flight camera for object recognition and the DLR 3D-Modeller for generating accurate environment models. Strategies are devised for safe interaction with the human during task execution, state depending robot behavior, and the appropriate mechanisms, to realize robustness in partially unstructured environments.

[1]  Gerd Hirzinger,et al.  Extrinsic and depth calibration of ToF-cameras , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Michael Suppa Autonomous robot work cell exploration using multisensory eye-in-hand systems , 2008 .

[3]  Darius Burschka,et al.  Real-time reactive motion generation based on variable attractor dynamics and shaped velocities , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[5]  Peter Ford Dominey,et al.  Anticipation and initiative in human-humanoid interaction , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[6]  Yasuyuki Yamada,et al.  Fail-safe human/robot contact in the safety space , 1996, Proceedings 5th IEEE International Workshop on Robot and Human Communication. RO-MAN'96 TSUKUBA.

[7]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[9]  Yoji Yamada,et al.  Proposal of Skill-Assist: a system of assisting human workers by reflecting their skills in positioning tasks , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[10]  John Kenneth Salisbury,et al.  A New Actuation Approach for Human Friendly Robot Design , 2004, Int. J. Robotics Res..

[11]  Charles C. Kemp,et al.  Human-Robot Interaction for Cooperative Manipulation: Handing Objects to One Another , 2007, RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication.

[12]  Alin Albu-Schäffer,et al.  An Analytical Method for the Planning of Robust Assembly Tasks of Complex Shaped Planar Parts , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[13]  Dana Kulic,et al.  Affective State Estimation for Human–Robot Interaction , 2007, IEEE Transactions on Robotics.

[14]  Alin Albu-Schäffer,et al.  Safety Evaluation of Physical Human-Robot Interaction via Crash-Testing , 2007, Robotics: Science and Systems.

[15]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[16]  Alin Albu-Schäffer,et al.  Safe Physical Human-Robot Interaction: Measurements, Analysis and New Insights , 2007, ISRR.

[17]  Gerd Hirzinger,et al.  A laser-triangulation based miniaturized 2-d range-scanner as integral part of a multisensory robot-gripper. , 1997 .

[18]  Gerd Hirzinger,et al.  The 3D-Modeller: A Multi-Purpose Vision Platform , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Alin Albu-Schäffer,et al.  Requirements for Safe Robots: Measurements, Analysis and New Insights , 2009, Int. J. Robotics Res..

[20]  Gerd Hirzinger,et al.  Hierarchical Featureless Tracking for Position-Based 6-DoF Visual Servoing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.