Reliability and information transmission in spiking neurons

Spiking neurons encode continuous, time-varying signals in sequences of identical action potentials. Relatively simple algorithms allow one to 'decode' this neural representation of sensory data to estimate the input signals. Decoding experiments provide a quantitative characterization of information transmission and computational reliability under real-time conditions. The results of these studies show that neural coding and computation in several systems approach fundamental physical and informational theoretic limits to performance.

[1]  Floyd Ratliff,et al.  Studies on Excitation and Inhibition in the Retina , 1975 .

[2]  H M Sakai,et al.  White-noise analysis in visual neuroscience , 1988, Visual Neuroscience.

[3]  H. Barlow The absolute efficiency of perceptual decisions. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[5]  William Bialek,et al.  Coding and computation with neural spike trains , 1990 .

[6]  J. Kelsey Studies on Excitation and Inhibition in the Retina , 1976 .

[7]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[8]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[9]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[10]  W. G. Owen,et al.  Temporal filtering in retinal bipolar cells. Elements of an optimal computation? , 1990, Biophysical journal.

[11]  Frank H. Eeckman,et al.  Analysis and Modeling of Neural Systems , 1992, Springer US.

[12]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[13]  W. McCulloch,et al.  The limiting information capacity of a neuronal link , 1952 .

[14]  Shumeet Baluja,et al.  Advances in Neural Information Processing , 1994 .

[15]  G. P. Moore,et al.  Statistical analysis and functional interpretation of neuronal spike data. , 1966, Annual review of physiology.

[16]  C.C.A.M. Gielen,et al.  Sensory interpretation of neural activity patterns , 1988 .

[17]  T. Bullock The Reliability of Neurons , 1970, The Journal of general physiology.

[18]  I. Whitfield Discharge Patterns of Single Fibers in the Cat's Auditory Nerve , 1966 .

[19]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[20]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[21]  R. FitzHugh A STATISTICAL ANALYZER FOR OPTIC NERVE MESSAGES , 1958, The Journal of general physiology.

[22]  G. P. Moore,et al.  SENSITIVITY OF NEURONES IN APLYSIA TO TEMPORAL PATTERN OF ARRIVING IMPULSES. , 1963, The Journal of experimental biology.

[23]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[24]  B J Richmond,et al.  Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. , 1991, Science.

[25]  L. Brillouin,et al.  Science and information theory , 1956 .

[26]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[27]  G. Wilkinson The Theory of Hearing , 1925, Nature.

[28]  Alexander Joseph Book reviewDischarge patterns of single fibers in the cat's auditory nerve: Nelson Yuan-Sheng Kiang, with the assistance of Takeshi Watanabe, Eleanor C. Thomas and Louise F. Clark: Research Monograph no. 35. Cambridge, Mass., The M.I.T. Press, 1965 , 1967 .

[29]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[30]  E. de Boer,et al.  On cochlear encoding: Potentialities and limitations of the reverse‐correlation technique , 1978 .

[31]  M. Lévesque Perception , 1986, The Yale Journal of Biology and Medicine.