Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

[1]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[4]  D. Hubel,et al.  Extent of recovery from the effects of visual deprivation in kittens. , 1965, Journal of neurophysiology.

[5]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[6]  D. Hubel,et al.  Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. , 1965, Journal of neurophysiology.

[7]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[8]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[9]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[10]  J. Pettigrew,et al.  Alteration of Visual Cortex from Environmental Asymmetries , 1973, Nature.

[11]  C. Blakemore,et al.  Environmental Modification of the Visual Cortex and the Neural Basis of Learning and Memory , 1973, Nature.

[12]  C. Blakemore,et al.  Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period , 1974, The Journal of physiology.

[13]  U. Yinon,et al.  The ocular dominance of cortical neurons in cats developed with divergent and convergent squint , 1975, Vision Research.

[14]  R. Freeman,et al.  Progressive changes in kitten striate cortex during monocular vision. , 1975, Journal of neurophysiology.

[15]  C. Blakemore,et al.  Innate and environmental factors in the development of the kitten's visual cortex. , 1975, The Journal of physiology.

[16]  H. Hirsch,et al.  Deficits in binocular depth perception in cats after alternating monocular deprivation , 1975, Science.

[17]  H. Hirsch,et al.  Cortical effect of early selective exposure to diagonal lines , 1975, Science.

[18]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[19]  M. Stryker,et al.  Modification of cortical orientation selectivity in the cat by restricted visual experience: a reexamination , 1975, Science.

[20]  C. Blakemore The conditions required for the maintenance of binocularity in the kitten's visual cortex. , 1976, The Journal of physiology.

[21]  N. Daw,et al.  Kittens reared in a unidirectional environment: evidence for a critical period. , 1976, The Journal of physiology.

[22]  P. B. Schechter,et al.  Brief monocular visual experience and kitten cortical binocularity , 1976, Brain Research.

[23]  P. D. Spear,et al.  Effects of visual deprivation and alterations in binocular competition on responses of striate cortex neurons in the cat , 1976, The Journal of comparative neurology.

[24]  N. Daw,et al.  Comparison of the critical periods for monocular and directional deprivation in cats. , 1977, The Journal of physiology.

[25]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[26]  D. Mitchell,et al.  Monocular astigmatism effects on kitten visual cortex development , 1977, Nature.

[27]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  D. Mitchell,et al.  A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. , 1977, The Journal of physiology.

[29]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[30]  S. Sherman,et al.  Conditions for dominance of one eye during competitive development of central connections in visually deprived cats , 1977, Brain Research.

[31]  R. Freeman,et al.  Monocular deprivation and recovery during sensitive period in kittens. , 1978, Journal of neurophysiology.

[32]  Y. Frégnac,et al.  Early development of visual cortical cells in normal and dark‐reared kittens: relationship between orientation selectivity and ocular dominance. , 1978, The Journal of physiology.

[33]  H. Hirsch,et al.  Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. , 1978, Journal of neurophysiology.

[34]  M. Stryker Postnatal development of ocular dominance columns in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, Archives italiennes de biologie.

[35]  J. Pettigrew,et al.  Effect of prior visual experience on cortical recovery from the effects of unilateral eyelid suture in kittens , 1978, The Journal of physiology.

[36]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[37]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[38]  J. Pettigrew,et al.  Degree of interocular synchrony required for maintenance of binocularity in kitten's visual cortex. , 1979, Journal of neurophysiology.

[39]  W. Singer,et al.  Inverted monocular vision prevents ocular dominance shift in kittens and impairs the functional state of visual cortex in adult cats , 1979, Brain Research.

[40]  R. C. Van Sluyters,et al.  Experimental strabismus in the kitten. , 1980, Journal of neurophysiology.

[41]  C. Bruce,et al.  Visual experience and development of interocular orientation disparity in visual cortex. , 1981, Journal of neurophysiology.

[42]  N. Berman,et al.  The critical period for alteration in cortical binocularity resulting from divergent and convergent strabismus. , 1981, Brain research.

[43]  M. Grünau Comparison of the effects of induced strabismus on binocularity in area 17 and the LS area in the cat , 1982 .

[44]  M. von Grunau Comparison of the effects of induced strabismus on binocularity in area 17 and the LS area in the cat. , 1982, Brain research.

[45]  R. C. Van Sluyters,et al.  The sensitive period for strabismus in the kitten. , 1982, Brain research.

[46]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[47]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  R. Freeman,et al.  An electrophysiological comparison of convergent and divergent strabismus in the cat: electrical and visual activation of single cortical cells. , 1983, Journal of neurophysiology.

[49]  Y. Chino,et al.  Effects of rearing kittens with convergent strabismus on development of receptive-field properties in striate cortex neurons. , 1983, Journal of neurophysiology.

[50]  P. D. Spear,et al.  Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus. , 1984, Journal of neurophysiology.

[51]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[52]  D. Mitchell The extent of visual recovery from early monocular or binocular visual deprivation in kittens. , 1988, The Journal of physiology.

[53]  R. Malach,et al.  Strabismus does not prevent recovery from monocular deprivation: A challenge for simple Hebbian models of synaptic modification , 1989, Visual Neuroscience.

[54]  N. Tumosa,et al.  Binocular competition affects the pattern and intensity of ocular activation columns in the visual cortex of cats , 1989, Visual Neuroscience.

[55]  J. Rauschecker,et al.  Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. , 1991, Physiological reviews.

[56]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[57]  G. Eschweiler,et al.  Temporal Integration in Visual Cortex of Cats with Surgically Induced Strabismus , 1993, The European journal of neuroscience.

[58]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[59]  Zhaoping Li,et al.  Efficient stereo coding in the multiscale representation , 1994 .

[60]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[61]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[62]  D. Hocking,et al.  An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[64]  J. Horton,et al.  Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia , 1996, Visual Neuroscience.

[65]  Nathan Intrator,et al.  Effect of Binocular Cortical Misalignment on Ocular Dominance and Orientation Selectivity , 1996, Neural Computation.

[66]  Roland Baddeley,et al.  An efficient code in V1? , 1996, Nature.

[67]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[68]  Geoffrey E. Hinton,et al.  Generative models for discovering sparse distributed representations. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[70]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[71]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[73]  D. Fitzpatrick,et al.  Unequal representation of cardinal and oblique contours in ferret visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D Purves,et al.  The distribution of oriented contours in the real world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[77]  F. Sengpiel,et al.  Influence of experience on orientation maps in cat visual cortex , 1999, Nature Neuroscience.

[78]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[79]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[80]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[81]  D. Chklovskii Binocular disparity can explain the orientation of ocular dominance stripes in primate primary visual area (V1) , 2000, Vision Research.

[82]  C. Furmanski,et al.  An oblique effect in human primary visual cortex , 2000, Nature Neuroscience.

[83]  M. Sur,et al.  Stability of Cortical Responses and the Statistics of Natural Scenes , 2001, Neuron.

[84]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[85]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[86]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[88]  D. Fitzpatrick,et al.  The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex , 2001, Nature.

[89]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[90]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[91]  A. Peters,et al.  The Concept of Cat Primary Visual Cortex , 2002 .

[92]  A. Peters,et al.  The cat primary visual cortex , 2002 .

[93]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[94]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[95]  A. Hyvärinen,et al.  A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.

[96]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[97]  C. Blakemore,et al.  Correlated binocular activity guides recovery from monocular deprivation , 2002, Nature.

[98]  Jason Wittenberg,et al.  Clarify: Software for Interpreting and Presenting Statistical Results , 2003 .

[99]  Terrence J. Sejnowski,et al.  Spatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes , 2003, Neural Computation.

[100]  G. Marsaglia,et al.  Evaluating Kolmogorov's distribution , 2003 .

[101]  R. Freeman,et al.  Oblique effect: a neural basis in the visual cortex. , 2003, Journal of neurophysiology.

[102]  Yee Whye Teh,et al.  Energy-Based Models for Sparse Overcomplete Representations , 2003, J. Mach. Learn. Res..

[103]  Bruno A. Olshausen,et al.  Principles of Image Representation in Visual Cortex , 2003 .

[104]  D. Mitchell,et al.  Brief Daily Periods of Binocular Vision Prevent Deprivation-Induced Acuity Loss , 2003, Current Biology.

[105]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[106]  H. Hirsch,et al.  Visual field deficits in cats reared with unequal alternating monocular exposure , 2004, Experimental Brain Research.

[107]  D. N. Spinelli,et al.  Modification of the distribution of receptive field orientation in cats by selective visual exposure during development , 1971, Experimental Brain Research.

[108]  W. Singer,et al.  Processing deficits in primary visual cortex of amblyopic cats. , 2004, Journal of neurophysiology.

[109]  Edward A Essock,et al.  A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. , 2004, Journal of vision.

[110]  C. Blakemore,et al.  Modification of single neurons in the kitten's visual cortex after brief periods of monocular visual experience , 2004, Experimental Brain Research.

[111]  Simon J. Thorpe,et al.  Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit , 2004, Neurocomputing.

[112]  C. Blakemore,et al.  An attempt to assess the effects of monocular deprivation and strabismus on synaptic efficiency in the kitten's visual cortex , 1977, Experimental Brain Research.

[113]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[114]  M. Cynader,et al.  Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus , 1975, Experimental Brain Research.

[115]  David J Tolhurst,et al.  Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. , 2004, Journal of neurophysiology.

[116]  R. Freeman,et al.  Cumulative effect of brief daily periods of monocular vision on kitten striate cortex , 2004, Experimental Brain Research.

[117]  G. Beauchamp,et al.  The management of strabismus in adults--III. The effects on disability. , 2005, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[118]  D. Mitchell,et al.  Short periods of concordant binocular vision prevent the development of deprivation amblyopia , 2006, The European journal of neuroscience.

[119]  Anjaneyulu Krothapalli,et al.  Turbulent pulsed jet , 2006, J. Vis..

[120]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[121]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[122]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[123]  Li Zhaoping,et al.  Theoretical understanding of the early visual processes by data compression and data selection , 2006, Network.

[124]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[125]  Geoffrey E. Hinton,et al.  Topographic Product Models Applied to Natural Scene Statistics , 2006, Neural Computation.

[126]  Jérôme Ribot,et al.  Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life , 2006, NeuroImage.

[127]  Martin Rehn,et al.  A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields , 2007, Journal of Computational Neuroscience.

[128]  Terrence J. Sejnowski,et al.  Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics , 2006, Neural Computation.

[129]  P. Dayan,et al.  An unsupervised learning model of neural plasticity: Orientation selectivity in goggle-reared kittens , 2007, Vision Research.

[130]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[131]  D. Mitchell,et al.  Monocular deprivation reduces reliability of visual cortical responses to binocular disparity stimuli , 2007, The European journal of neuroscience.

[132]  J. Triesch,et al.  Emergence of Disparity Tuning during the Development of Vergence Eye Movements , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[133]  D. Mitchell,et al.  Brief daily binocular vision prevents monocular deprivation effects in visual cortex , 2007, The European journal of neuroscience.

[134]  G. Goodhill Contributions of Theoretical Modeling to the Understanding of Neural Map Development , 2007, Neuron.

[135]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[136]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[137]  A. Ioannides,et al.  Attention Modulates Earliest Responses in the Primary Auditory and Visual Cortices , 2008, Neuron.

[138]  Nicholas V. Swindale Visual map , 2008, Scholarpedia.

[139]  E. Chichilnisky,et al.  Direction Selectivity in the Retina Is Established Independent of Visual Experience and Cholinergic Retinal Waves , 2008, Neuron.

[140]  David J. Field,et al.  Innate Visual Learning through Spontaneous Activity Patterns , 2008, PLoS Comput. Biol..

[141]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[142]  Shigeru Tanaka,et al.  A Postnatal Critical Period for Orientation Plasticity in the Cat Visual Cortex , 2009, PloS one.

[143]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[144]  B. Robertson A celebration of the 50th anniversary of David Hubel and Torsten Wiesel's Receptive fields of single neurones in the cat's striate cortex , 2009 .

[145]  Conor J. Houghton,et al.  Sparse coding of birdsong and receptive field structure in songbirds , 2009, Network.

[146]  D. Mitchell,et al.  Daily mixed visual experience that prevents amblyopia in cats does not always allow the development of good binocular depth perception. , 2009, Journal of vision.

[147]  Matthias Bethge,et al.  Natural Image Coding in V1: How Much Use Is Orientation Selectivity? , 2008, PLoS Comput. Biol..

[148]  Michael S. Lewicki,et al.  Emergence of complex cell properties by learning to generalize in natural scenes , 2009, Nature.

[149]  Aapo Hyvärinen,et al.  A Two-Layer Model of Natural Stimuli Estimated with Score Matching , 2010, Neural Computation.

[150]  Damien J. Mannion,et al.  Orientation anisotropies in human visual cortex. , 2010, Journal of neurophysiology.

[151]  Jochen Triesch,et al.  Independent Component Analysis in Spiking Neurons , 2010, PLoS Comput. Biol..

[152]  Colin W. G. Clifford,et al.  The influence of global form on local orientation anisotropies in human visual cortex , 2010, NeuroImage.

[153]  P. König,et al.  Getting real—sensory processing of natural stimuli , 2010, Current Opinion in Neurobiology.

[154]  Andrew Y. Ng,et al.  Unsupervised learning models of primary cortical receptive fields and receptive field plasticity , 2011, NIPS.

[155]  Michael Robert DeWeese,et al.  A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields , 2011, PLoS Comput. Biol..

[156]  S. Eglen,et al.  Modeling developmental patterns of spontaneous activity , 2011, Current Opinion in Neurobiology.

[157]  D. Mitchell,et al.  Protection against deprivation amblyopia depends on relative not absolute daily binocular exposure. , 2011, Journal of vision.

[158]  D. Mitchell,et al.  Preference for binocular concordant visual input in early postnatal development remains despite prior monocular deprivation , 2011, Vision Research.

[159]  G. Davis,et al.  Current Opinion in Neurobiology 2011 , 2011 .

[160]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[161]  M. Weliky,et al.  Development of cortical orientation selectivity in the absence of visual experience with contour. , 2011, Journal of neurophysiology.

[162]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[163]  Peter Dayan,et al.  Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics , 2012, PLoS Comput. Biol..

[164]  Michael R. Ibbotson,et al.  Sparse Coding on the Spot: Spontaneous Retinal Waves Suffice for Orientation Selectivity , 2012, Neural Computation.