Estimating attraction basin sizes of combinatorial optimization problems

Given a particular instance of a combinatorial optimization problem, the knowledge about the attraction basin sizes can help to analyze the difficulty encountered by local search algorithms while solving it. As calculating these sizes exhaustively is computationally intractable, we focus on methods for their estimation. The accuracy of some of these estimation methods depends on the way in which the sample of solutions of the search space is chosen. In this paper, we propose a novel sampling method, which incorporates the knowledge obtained by the already explored solutions into the sampling strategy. So, in contrast to those that already exist, our method can adapt its behavior to the characteristics of the particular attraction basin. We apply our proposal to a number of instances of three famous problems: the quadratic assignment problem, the linear ordering problem and the permutation flow shop scheduling problem. We consider permutation sizes $$n = 10$$n=10 and $$n = 12$$n=12 and three different neighborhoods: adjacent swap, 2-exchange and insert, and observe that the new method generally outperforms those that already exist.

[1]  Adam Prügel-Bennett,et al.  Maximum Satisfiability: Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Problem , 2012, IEEE Transactions on Evolutionary Computation.

[2]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[3]  Sébastien Vérel,et al.  Clustering of Local Optima in Combinatorial Fitness Landscapes , 2011, LION.

[4]  Ekhine Irurozki,et al.  An R package for permutations, Mallows and Generalized Mallows models , 2014 .

[5]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[6]  L. Darrell Whitley,et al.  Tunnelling Crossover Networks , 2015, GECCO.

[7]  Marcus Gallagher,et al.  Using Landscape Topology to Compare Continuous Metaheuristics: A Framework and Case Study on EDAs and Ridge Structure , 2012, Evolutionary Computation.

[8]  Sébastien Vérel,et al.  Local Optima Networks: A New Model of Combinatorial Fitness Landscapes , 2014, ArXiv.

[9]  J. A. Lozano,et al.  PerMallows: An R Package for Mallows and Generalized Mallows Models , 2016 .

[10]  Alexander Mendiburu,et al.  An Evaluation of Methods for Estimating the Number of Local Optima in Combinatorial Optimization Problems , 2013, Evolutionary Computation.

[11]  Sébastien Vérel,et al.  Local Optima Networks of NK Landscapes With Neutrality , 2011, IEEE Transactions on Evolutionary Computation.

[12]  É. Taillard Some efficient heuristic methods for the flow shop sequencing problem , 1990 .

[13]  Jean-Paul Watson,et al.  An Introduction to Fitness Landscape Analysis and Cost Models for Local Search , 2010 .

[14]  Irene Moser,et al.  Identifying Features of Fitness Landscapes and Relating Them to Problem Difficulty , 2017, Evolutionary Computation.

[15]  Adam Prügel-Bennett,et al.  Quadratic assignment problem: a landscape analysis , 2015, Evol. Intell..

[16]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[17]  Adam Prügel-Bennett,et al.  On the Landscape of Combinatorial Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[18]  Sébastien Vérel,et al.  First-Improvement vs. Best-Improvement Local Optima Networks of NK Landscapes , 2010, PPSN.

[19]  L. Kallel,et al.  How to detect all maxima of a function , 2001 .

[20]  Benjamin Van Roy,et al.  A Tutorial on Thompson Sampling , 2017, Found. Trends Mach. Learn..

[21]  Alexander Mendiburu,et al.  A study on the complexity of TSP instances under the 2-exchange neighbor system , 2011, 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[22]  Vassilis Zissimopoulos,et al.  On the Hardness of the Quadratic Assignment Problem with Metaheuristics , 2002, J. Heuristics.

[23]  Sébastien Vérel,et al.  Complex-network analysis of combinatorial spaces: The NK landscape case , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Anton V. Eremeev,et al.  On Confidence Intervals for the Number of Local Optima , 2003, EvoWorkshops.

[25]  Kathleen Steinhöfel,et al.  Analysis of Local Search Landscapes for k-SAT Instances , 2010, Math. Comput. Sci..

[26]  Enrique Alba,et al.  Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance , 2012, PPSN.

[27]  Jonathan E. Rowe,et al.  Phase Transition and Landscape Properties of the Number Partitioning Problem , 2014, EvoCOP.

[28]  Kathleen Steinhöfel,et al.  Combinatorial landscape analysis for k-SAT instances , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[29]  C. R. Reeves,et al.  Landscapes, operators and heuristic search , 1999, Ann. Oper. Res..

[30]  Sébastien Vérel,et al.  Local Optima Networks with Escape Edges , 2011, Artificial Evolution.

[31]  Adam Prügel-Bennett,et al.  Anatomy of the fitness landscape for dense graph-colouring problem , 2015, Swarm Evol. Comput..

[32]  Colin R. Reeves Statistical Properties of Combinatorial Landscapes: An Application to Scheduling Problems , 2001 .

[33]  Alexander Mendiburu,et al.  Estimating Attraction Basin Sizes , 2016, CAEPIA.

[34]  Rich Caruana,et al.  Estimating the Number of Local Minima in Big, Nasty Search Spaces , 1999 .

[35]  Panos M. Pardalos,et al.  On the number of local minima for the multidimensional assignment problem , 2006, J. Comb. Optim..

[36]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[37]  Sébastien Vérel,et al.  A study of NK landscapes' basins and local optima networks , 2008, GECCO '08.

[38]  Anton V. Eremeev,et al.  Non-parametric Estimation of Properties of Combinatorial Landscapes , 2002, EvoWorkshops.

[39]  Colin R. Reeves,et al.  Estimating the Number of Solutions for SAT Problems , 2004, PPSN.

[40]  T. Stützle,et al.  The Linear Ordering Problem: Instances, Search Space Analysis and Algorithms , 2004 .