A model‐based PID controller for Hammerstein systems using B‐spline neural networks

In this paper, a new model-based proportional–integral derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches

[1]  Pekka Loula,et al.  Hammerstein Model for Speech Coding , 2003, EURASIP J. Adv. Signal Process..

[2]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[3]  L. Patnaik,et al.  Self-tuning minimum-variance control of nonlinear systems of the Hammerstein model , 1981 .

[4]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[5]  Ming-guang Zhang,et al.  Adaptive PID Control Strategy Based on RBF Neural Network Identification , 2005, 2005 International Conference on Neural Networks and Brain.

[6]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[7]  Han-Fu Chen,et al.  Pathwise convergence of recursive identification algorithms for Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[8]  Lu Wang,et al.  Identification and Control for Heart Rate Regulation During Treadmill Exercise , 2007, IEEE Transactions on Biomedical Engineering.

[9]  Xia Hong,et al.  Hammerstein model identification algorithm using Bezier-Bernstein approximation , 2007 .

[10]  Amir F. Atiya,et al.  Neuro-predictive process control using online controller adaptation , 2001, IEEE Trans. Control. Syst. Technol..

[11]  S. Billings,et al.  Non-linear system identification using the Hammerstein model , 1979 .

[12]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[13]  David T. Westwick,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[14]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[15]  P. Venkataraman,et al.  Applied Optimization with MATLAB Programming , 2001 .

[16]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[17]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[18]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach , 2002, Advanced information processing.

[19]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[20]  Sheng Chen,et al.  Modelling and control of Hammerstein system using B-spline approximation and the inverse of De Boor algorithm , 2012, Int. J. Syst. Sci..

[21]  Andrew E. Yagle,et al.  Nonlinear system identification of hydraulic actuator. Friction dynamics using a Hammerstein model , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[22]  Liu Ding,et al.  Self-tuning PID controller for a nonlinear system based on support vector machines , 2008 .

[23]  K. Warwick,et al.  Adaptive general predictive controller for nonlinear systems , 1991 .

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data , 2002, Advanced Information Processing.

[26]  Man Gyun Na,et al.  Auto-tuned PID controller using a model predictive control method for the steam generator water level , 2001 .

[27]  H. Bloemen,et al.  Model-based predictive control for Hammerstein?Wiener systems , 2001 .

[28]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[29]  Minyue Fu,et al.  A blind approach to Hammerstein model identification , 2002, IEEE Trans. Signal Process..

[30]  H. Bloemen,et al.  Model-based predictive control for Hammerstein systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  T. Kavli ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .

[32]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[33]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[34]  Min Xu,et al.  Auto-tuning of PID controller parameters with supervised receding horizon optimization. , 2005, ISA transactions.

[35]  Z. Lang A nonparametric polynomial identification algorithm for the Hammerstein system , 1997, IEEE Trans. Autom. Control..

[36]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[37]  M. Haloua,et al.  System identification based on Hammerstein model , 2005 .

[38]  Serdar Iplikci,et al.  A comparative study on a novel model‐based PID tuning and control mechanism for nonlinear systems , 2010 .

[39]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[40]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[41]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[42]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[43]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[44]  Chia-Ju Wu,et al.  Genetic Tuning of PID Controllers Using a Neural Network Model: A Seesaw Example , 1999, J. Intell. Robotic Syst..

[45]  Luca Sani,et al.  Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives , 2001, IEEE Trans. Ind. Electron..

[46]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers - A Survey , 1992 .

[47]  Xia Hong,et al.  Generalized neurofuzzy network modeling algorithms using Bezier-Bernstein polynomial functions and additive decomposition , 2000, IEEE Trans. Neural Networks Learn. Syst..

[48]  Junghui Chen,et al.  Applying neural networks to on-line updated PID controllers for nonlinear process control , 2004 .

[49]  Xia Hong,et al.  A pole assignment controller for Bezier-Bernstein polynomial based Hammerstein model - Paper ID 95 , 2006 .

[50]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[51]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[52]  Zhao Shengdun,et al.  Adaptive PID controller based on online LSSVM identification , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.