On the Design and Analysis of Competent Selecto-recombinative GAs

In this paper, we study two recent theoretical modelsa population-sizing model and a convergence modeland examine their assumptions to gain insights into the conditions under which selecto-recombinative GAs work well. We use these insights to formulate several design rules to develop competent GAs for practical problems. To test the usefulness of the design rules, we consider as a case study the map-labeling problem, an NP-hard problem from cartography. We compare the predictions of the theoretical models with the actual performance of the GA for the map-labeling problem. Experiments show that the predictions match the observed scale-up behavior of the GA, thereby strengthening our claim that the design rules can guide the design of competent selecto-recombinative GAs for realistic problems.

[1]  Dirk Thierens,et al.  Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms , 2002, Int. J. Approx. Reason..

[2]  Joe Marks,et al.  An empirical study of algorithms for point-feature label placement , 1995, TOGS.

[3]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..

[4]  K. Aardal,et al.  Algorithms for maximum independent set applied to map labelling , 2000 .

[5]  Joe Marks,et al.  The Computational Complexity of Cartographic Label Placement , 1991 .

[6]  Ingo Wegener,et al.  Real royal road functions--where crossover provably is essential , 2001, Discret. Appl. Math..

[7]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[8]  Riccardo Poli Recursive Conditional Schema Theorem, Convergence and Population Sizing in Genetic Algorithms , 2000, FOGA.

[9]  David E. Goldberg,et al.  Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage , 2003, GECCO.

[10]  Frank Wagner,et al.  A packing problem with applications to lettering of maps , 1991, SCG '91.

[11]  J. E. Rowe The dynamical systems model of the simple genetic algorithm , 2001 .

[12]  Dirk Thierens,et al.  Convergence Models of Genetic Algorithm Selection Schemes , 1994, PPSN.

[13]  A. Verweij Selected applications of integer programming : a computational study , 2000 .

[14]  Adam Prügel-Bennett,et al.  A Statistical Mechanical Formulation of the Dynamics of Genetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[15]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Thomas Bck Generalized convergence models for tournament|and (1; ?)|selection , 1995 .

[17]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[18]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Masaharu Munetomo,et al.  Identifying Linkage Groups by Nonlinearity/Non-monotonicity Detection , 1999 .

[21]  David E. Goldberg,et al.  The Design of Innovation , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  Christopher R. Stephens,et al.  Schemata Evolution and Building Blocks , 1999, Evolutionary Computation.

[23]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[24]  Steven van Dijk,et al.  Genetic algorithms for map labeling , 2001 .

[25]  Günther R. Raidl,et al.  A Genetic Algorithm for Labeling Point Features , 2003 .

[26]  Dirk Thierens,et al.  Building a GA from Design Principles for Learning Bayesian Networks , 2003, GECCO.

[27]  Dirk Thierens,et al.  Selection Schemes, Elitist Recombination, and Selection Intensity , 1997, ICGA.

[28]  David E. Goldberg,et al.  Time Complexity of genetic algorithms on exponentially scaled problems , 2000, GECCO.

[29]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[30]  Kalyanmoy Deb,et al.  Sufficient conditions for deceptive and easy binary functions , 1994, Annals of Mathematics and Artificial Intelligence.

[31]  Dirk Thierens,et al.  Elitist recombination: an integrated selection recombination GA , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[32]  Roger L. Wainwright,et al.  Placing Text Labels an Maps and Diagrams using Genetic Algorithms with Masking , 1997, INFORMS J. Comput..

[33]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[34]  Dirk Thierens,et al.  Using Genetic Algorithms for Solving Hard Problems in GIS , 2002, GeoInformatica.

[35]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[36]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[37]  MarksJoe,et al.  An empirical study of algorithms for point-feature label placement , 1995 .

[38]  Thomas Bäck,et al.  Generalized Convergence Models for Tournament- and (mu, lambda)-Selection , 1995, ICGA.

[39]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[40]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[41]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[42]  H. Kargupta Search, polynomial complexity, and the fast messy genetic algorithm , 1996 .

[43]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[44]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[45]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[46]  Luiz Antonio Nogueira Lorena,et al.  Tabu Search Heuristic for Point-Feature Cartographic Label Placement , 2002, GeoInformatica.