Identification of Variable Frequency Induction Motor Models from Operating Data

The parameters of the induction motor model vary as operating conditions change. Accurate knowledge of these parameters and their dependency on operating conditions is critical for optimal field oriented control. This paper presents a systematic approach to modeling an induction motor considering operating conditions. All parameters are assumed to vary as a function of the operating conditions. The parameters are estimated from transient data using a constrained optimization algorithm. The parameters are mapped to the operating conditions using polynomial functions and artificial neural networks. The model is validated for both steady state and transient conditions.

[1]  Seung-Ki Sul A novel technique of rotor resistance estimation considering variation of mutual inductance , 1989 .

[2]  Ali Keyhani,et al.  Nonlinear neural-network modeling of an induction machine , 1999, IEEE Trans. Control. Syst. Technol..

[3]  Toshihiko Noguchi,et al.  Field-oriented control of an induction motor with robust on-line tuning of its parameters , 1997 .

[4]  Jennifer Stephan,et al.  Real-time estimation of the parameters and fluxes of induction motors , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[5]  Chern-Lin Chen,et al.  Automatic IM parameter measurement under sensorless field-oriented control , 1999, IEEE Trans. Ind. Electron..

[6]  Matthew W. Dunnigan,et al.  A new method of rotor resistance estimation for vector-controlled induction machines , 1997, IEEE Trans. Ind. Electron..

[7]  Thomas A. Lipo,et al.  An automated rotor time-constant measurement system for indirect field-oriented drives , 1988 .

[8]  F. Shokooh,et al.  Parameter estimation for induction machines based on sensitivity analysis , 1988, Record of Conference Papers., Industrial Applications Society 35th Annual Petroleum and Chemical Industry Conference,.

[9]  N.R. Klaes Parameters identification of an induction machine with regard to dependencies on saturation , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[10]  Atsuo Kawamura,et al.  Online rotor resistance estimation using the transient state under the speed sensorless control of induction motor , 2000 .

[11]  G.R. Slemon,et al.  Modelling of inductance machines for electric drives , 1988, Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting.

[12]  F. S. van der Merwe,et al.  Induction motor parameter estimation through an output error technique , 1994 .

[13]  E. Mendes,et al.  A simple model for core losses and magnetic saturation in induction machines adapted for direct stator flux orientation control , 1994 .

[14]  Benoit Robyns,et al.  Influence of digital current control strategy on the sensitivity to electrical parameter uncertainties of induction motor indirect field-oriented control , 1999 .

[15]  K. Matsuse,et al.  High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account , 1997 .

[16]  Cursino B. Jacobina,et al.  Linear parameter estimation for induction machines considering the operating conditions , 1999 .

[17]  Cursino Brandão Jacobina,et al.  Nonlinear parameter estimation of steady-state induction machine models , 1997, IEEE Trans. Ind. Electron..

[18]  Thomas A. Lipo,et al.  An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives , 1992 .

[19]  Pragasen Pillay,et al.  Application of genetic algorithms to motor parameter determination for transient torque calculations , 1997 .

[20]  David J. Atkinson,et al.  Observers for induction motor state and parameter estimation , 1991 .

[21]  X. Xu,et al.  Implementation of direct stator flux orientation control on a versatile DSP based system , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[22]  Seung-Ki Sul,et al.  Induction machine parameter identification using PWM inverter at standstill , 1997 .

[23]  Stephen J. Chapman,et al.  Electric Machinery Fundamentals , 1991 .