Scalability of the Bayesian optimization algorithm
暂无分享,去创建一个
[1] David Maxwell Chickering,et al. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.
[2] Gregory F. Cooper,et al. A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.
[3] David E. Goldberg,et al. Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .
[4] David E. Goldberg,et al. The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .
[5] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[6] Thomas D. LaToza,et al. On the supply of building blocks , 2001 .
[7] David E. Goldberg,et al. Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .
[8] David E. Goldberg,et al. Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.
[9] David E. Goldberg,et al. Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.
[10] Pedro Larrañaga,et al. Combinatonal Optimization by Learning and Simulation of Bayesian Networks , 2000, UAI.
[11] Fernando G. Lobo,et al. A Survey of Optimization by Building and Using Probabilistic Models , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[12] Heinz Mühlenbein,et al. FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.
[13] Dirk Thierens,et al. Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.
[14] D. Goldberg,et al. BOA: the Bayesian optimization algorithm , 1999 .
[15] Fernando G. Lobo,et al. A parameter-less genetic algorithm , 1999, GECCO.
[16] Heinz Mühlenbein,et al. Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.
[17] E. Cantu-Paz,et al. The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.
[18] G. Harik. Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .
[19] P. Grünwald. The Minimum Description Length Principle and Reasoning under Uncertainty , 1998 .
[20] Shumeet Baluja,et al. Fast Probabilistic Modeling for Combinatorial Optimization , 1998, AAAI/IAAI.
[21] D. Goldberg,et al. Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[22] Jorma Rissanen,et al. Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.
[23] Peter Gr Unwald. The minimum description length principle and reasoning under uncertainty , 1998 .
[24] David Maxwell Chickering,et al. A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.
[25] H. Kargupta. Search, polynomial complexity, and the fast messy genetic algorithm , 1996 .
[26] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[27] Nir Friedman,et al. On the Sample Complexity of Learning Bayesian Networks , 1996, UAI.
[28] Nir Friedman,et al. Learning Bayesian Networks with Local Structure , 1996, UAI.
[29] David E. Goldberg,et al. Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.
[30] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[31] David E. Goldberg,et al. Learning Linkage , 1996, FOGA.
[32] Dan Boneh,et al. On genetic algorithms , 1995, COLT '95.
[33] Heinz Mühlenbein,et al. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.
[34] Kalyanmoy Deb,et al. Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..
[35] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[36] David E. Goldberg,et al. Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.
[37] D. E. Goldberg,et al. Genetic Algorithms in Search , 1989 .
[38] Ronald A. Howard,et al. Readings on the Principles and Applications of Decision Analysis , 1989 .
[39] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[40] David E. Goldberg,et al. Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.
[41] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[42] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[43] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[44] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[45] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .