Scaling-invariant Functions versus Positively Homogeneous Functions

Scaling-invariant functions preserve the order of points when the points are scaled by the same positive scalar (usually with respect to a unique reference point). Composites of strictly monotonic functions with positively homogeneous functions are scaling-invariant with respect to zero. We prove in this paper that also the reverse is true for large classes of scaling-invariant functions. Specifically, we give necessary and sufficient conditions for scalinginvariant functions to be composites of a strictly monotonic function with a positively homogeneous function. We also study sublevel sets of scalinginvariant functions generalizing well-known properties of positively homogeneous functions. Communicated by Juan-Enrique Martinez Legaz.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  A. M. Rubinov,et al.  Duality for increasing positively homogeneous functions and normal sets , 1998 .

[3]  R. Rajendiran,et al.  Topological Spaces , 2019, A Physicist's Introduction to Algebraic Structures.

[4]  A. Denjoy Sur les fonctions dérivées sommables , 1915 .

[5]  A. Auger,et al.  Verifiable conditions for the irreducibility and aperiodicity of Markov chains by analyzing underlying deterministic models , 2015, Bernoulli.

[6]  Numérisation de documents anciens mathématiques Bulletin de la Société Mathématique de France , 1873 .

[7]  Olivier Teytaud,et al.  Lower Bounds for Comparison Based Evolution Strategies Using VC-dimension and Sign Patterns , 2011, Algorithmica.

[8]  Valentin V. Gorokhovik,et al.  Saddle representations of positively homogeneous functions by linear functions , 2018, Optim. Lett..

[9]  Anne Auger,et al.  Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains , 2013, SIAM J. Optim..

[10]  J. Dutta,et al.  Monotonic Analysis over Cones: I , 2004 .

[11]  Rafail N. Gasimov,et al.  Strictly Increasing Positively Homogeneous Functions with Application to Exact Penalization , 2003 .

[12]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[13]  Valentin V. Gorokhovik,et al.  Positively Homogeneous Functions Revisited , 2016, J. Optim. Theory Appl..

[14]  Attila Gilányi,et al.  An Introduction to the Theory of Functional Equations and Inequalities , 2008 .

[15]  Anne Auger,et al.  Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule , 2013, ArXiv.

[16]  J. B. Lasserre,et al.  Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions , 2002 .

[17]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[18]  Youhei Akimoto,et al.  Generalized drift analysis in continuous domain: linear convergence of (1 + 1)-ES on strongly convex functions with Lipschitz continuous gradients , 2019, FOGA '19.

[19]  M. Muresan A concrete approach to classical analysis , 2009 .