Efficient Genetic Algorithms Using Discretization Scheduling

In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.

[1]  Yaochu Jin,et al.  Managing approximate models in evolutionary aerodynamic design optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[2]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[3]  Erik D. Goodman,et al.  Coarse-grain parallel genetic algorithms: categorization and new approach , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[4]  David E. Goldberg,et al.  Optimal Sampling For Genetic Algorithms , 1996 .

[5]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[6]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[7]  David E. Goldberg,et al.  Time Complexity of genetic algorithms on exponentially scaled problems , 2000, GECCO.

[8]  Erik D. Goodman,et al.  Optimal design of laminated composite structures using coarse-grain parallel genetic algorithms , 1994 .

[9]  Benjamin W. Wah,et al.  Scheduling of Genetic Algorithms in a Noisy Environment , 1994, Evolutionary Computation.

[10]  W. Carpenter,et al.  A comparison of polynomial approximations and artificial neural nets as response surfaces , 1993 .

[11]  W. Deming,et al.  Some Theory of Sampling , 1950 .

[12]  Erik D. Goodman,et al.  An Injection Island GA for Flywheel Design Optimization , 1997 .

[13]  R. Elston The mathematical theory of quantitative genetics , 1982 .

[14]  N. Schraudolph,et al.  Dynamic Parameter Encoding for Genetic Algorithms , 1992, Machine Learning.

[15]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[16]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[17]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[18]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[19]  Dirk Thierens,et al.  Convergence Models of Genetic Algorithm Selection Schemes , 1994, PPSN.

[20]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[21]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[22]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[23]  Brad L. Miller,et al.  Noise, sampling, and efficient genetic algorthms , 1997 .

[24]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[25]  Benjamin W. Wah,et al.  Dynamic Control of Genetic Algorithms in a Noisy Environment , 1993, ICGA.

[26]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[27]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[28]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[29]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[30]  Dimitrios K. Karpouzos,et al.  A multipopulation genetic algorithm to solve the inverse problem in hydrogeology , 2001 .

[31]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[32]  David E. Goldberg,et al.  Efficient evaluation relaxation under integrated fitness functions , 2001 .

[33]  A. Booth Numerical Methods , 1957, Nature.

[34]  William W. Hargrove,et al.  MECHANISTIC-BASED GENETIC ALGORITHM SEARCH ON A BEOWULF CLUSTER OF LINUX PCS , 2000 .

[35]  Jens von Wolfersdorf,et al.  Shape Optimization of Cooling Channels Using Genetic Algorithms , 1997 .

[36]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[37]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[38]  Godfrey A. Walters,et al.  Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method , 1996 .

[39]  Nozomu Kogiso,et al.  Genetic algorithms with local improvement for composite laminate design , 1993 .

[40]  Ian C. Parmee,et al.  THE ROLE OF EVOLUTIONARY AND ADAPTIVE SEARCH DURING WHOLE SYSTEM, CONSTRAINED AND DETAILED DESIGN OPTIMIZATION , 1997 .

[41]  N. Sun Inverse problems in groundwater modeling , 1994 .

[42]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[43]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[44]  David E. Goldberg,et al.  Toward a Mechanics of Conceptual Machines , 1995 .

[45]  M. Kimura Difiusion models in population genetics , 1964 .