The compact genetic algorithm

This paper introduces the "compact genetic algorithm" (cGA). The cGA represents the population as a probability distribution over the set of solutions, and is operationally equivalent to the order-one behavior of the simple GA with uniform crossover. It processes each gene independently and requires less memory than the simple GA.

[1]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[2]  Larry J. Eshelman,et al.  Crossover's Niche , 1993, International Conference on Genetic Algorithms.

[3]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[4]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[5]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[6]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[7]  David E. Goldberg,et al.  SEARCH, Blackbox Optimization, And Sample Complexity , 1996, FOGA.

[8]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[9]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[10]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[11]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[12]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[13]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[14]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[15]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[16]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[17]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.