Improving convergence of evolutionary multi-objective optimization with local search: a concurrent-hybrid algorithm

A local search method is often introduced in an evolutionary optimization algorithm, to enhance its speed and accuracy of convergence to optimal solutions. In multi-objective optimization problems, the implementation of local search is a non-trivial task, as determining a goal for local search in presence of multiple conflicting objectives becomes a difficult task. In this paper, we borrow a multiple criteria decision making concept of employing a reference point based approach of minimizing an achievement scalarizing function and integrate it as a search operator with a concurrent approach in an evolutionary multi-objective algorithm. Simulation results of the new concurrent-hybrid algorithm on several two to four-objective problems compared to a serial approach, clearly show the importance of local search in aiding a computationally faster and accurate convergence to the Pareto optimal front.

[1]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[2]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[4]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[5]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[6]  Peter J. Fleming,et al.  Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  Hisao Ishibuchi,et al.  Some Issues on the Implementation of Local Search in Evolutionary Multiobjective Optimization , 2004, GECCO.

[8]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[9]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[10]  K. Deb,et al.  Hybrid methods for multi-objective evolutionary algorithms , 2002 .

[11]  Kalyanmoy Deb,et al.  A robust evolutionary framework for multi-objective optimization , 2008, GECCO '08.

[12]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[13]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[14]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[16]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[17]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[18]  Isao Ono,et al.  Local Search for Multiobjective Function Optimization: Pareto Descent Method , 2006 .

[19]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[20]  Susana C. Esquivel,et al.  Multiplicity and local search in evolutionary algorithms to build the Pareto front , 2000, Proceedings 20th International Conference of the Chilean Computer Science Society.

[21]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[22]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[23]  Carlos A. Coello Coello,et al.  Applications of multi-objective evolutionary algorithms in economics and finance: A survey , 2007, 2007 IEEE Congress on Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[25]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[26]  Kaisa Miettinen,et al.  Experiments with classification-based scalarizing functions in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[27]  Nicola Beume,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Gradient-based / Evolutionary Relay Hybrid for Computing Pareto Front Approximations Maximizing the S-Metric , 2007 .

[28]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[29]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[32]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[33]  Kalyanmoy Deb,et al.  Deciphering innovative principles for optimal electric brushless D.C. permanent magnet motor design , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[34]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[35]  Clarisse Dhaenens,et al.  A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop , 2001, EMO.

[36]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[37]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[38]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[39]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[40]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[41]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[42]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[43]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[44]  Margaret M. Wiecek,et al.  Retrieval and use of the balance set in multiobjective global optimization , 1999 .

[45]  Aravind Srinivasan,et al.  Innovization: Discovery of Innovative Design Principles Through Multiobjective Evolutionary Optimization , 2008, Multiobjective Problem Solving from Nature.

[46]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[47]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[48]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1995 .

[49]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[50]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications , 2008, Natural Computing Series.

[51]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.