Can machine learning account for human visual object shape similarity judgments?

[1]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[2]  R. Jacobs,et al.  Comparing the Visual Representations and Performance of Humans and Deep Neural Networks , 2018, Current Directions in Psychological Science.

[3]  Aaron R. Seitz,et al.  Deep Neural Networks for Modeling Visual Perceptual Learning , 2018, The Journal of Neuroscience.

[4]  Samy Bengio,et al.  A Study on Overfitting in Deep Reinforcement Learning , 2018, ArXiv.

[5]  Thomas L. Griffiths,et al.  Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations , 2017, Cogn. Sci..

[6]  François Chollet,et al.  Deep Learning with Python , 2017 .

[7]  Robert A Jacobs,et al.  Visual Shape Perception as Bayesian Inference of 3D Object-Centered Shape Representations , 2017, Psychological review.

[8]  Lucas Beyer,et al.  In Defense of the Triplet Loss for Person Re-Identification , 2017, ArXiv.

[9]  Jessica B. Hamrick,et al.  psiTurk: An open-source framework for conducting replicable behavioral experiments online , 2016, Behavior research methods.

[10]  Lorenzo Rosasco,et al.  Generalization Properties and Implicit Regularization for Multiple Passes SGM , 2016, ICML.

[11]  Jonas Kubilius,et al.  Deep Neural Networks as a Computational Model for Human Shape Sensitivity , 2016, PLoS Comput. Biol..

[12]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[13]  Yoram Singer,et al.  Train faster, generalize better: Stability of stochastic gradient descent , 2015, ICML.

[14]  Atsuto Maki,et al.  Factors of Transferability for a Generic ConvNet Representation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Nikolaus Kriegeskorte,et al.  Deep neural networks: a new framework for modelling biological vision and brain information processing , 2015, bioRxiv.

[16]  Robert A. Jacobs,et al.  From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach , 2015, PLoS Comput. Biol..

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[18]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[20]  Nir Ailon,et al.  Deep Metric Learning Using Triplet Network , 2014, SIMBAD.

[21]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[22]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[23]  Yang Song,et al.  Learning Fine-Grained Image Similarity with Deep Ranking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  D. Hermans,et al.  Meet the Fribbles: novel stimuli for use within behavioural research , 2014, Front. Psychol..

[25]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[26]  Brian Kulis,et al.  Metric Learning: A Survey , 2013, Found. Trends Mach. Learn..

[27]  Marc Sebban,et al.  A Survey on Metric Learning for Feature Vectors and Structured Data , 2013, ArXiv.

[28]  Shimon Edelman,et al.  Renewing the respect for similarity , 2012, Front. Comput. Neurosci..

[29]  Jürgen Schmidhuber,et al.  Transfer learning for Latin and Chinese characters with Deep Neural Networks , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[30]  Jun-Ming Xu,et al.  Metric Learning for Estimating Psychological Similarities , 2012, TIST.

[31]  H. Bülthoff,et al.  Similarity and categorization: from vision to touch. , 2011, Acta psychologica.

[32]  Christian Wallraven,et al.  Categorizing natural objects: a comparison of the visual and the haptic modalities , 2011, Experimental Brain Research.

[33]  H. Bülthoff,et al.  Visual and haptic perceptual spaces show high similarity in humans. , 2010, Journal of vision.

[34]  H. Bülthoff,et al.  Multimodal similarity and categorization of novel, three-dimensional objects , 2007, Neuropsychologia.

[35]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[36]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[38]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[39]  W. Hayward,et al.  Viewpoint Dependence and Object Discriminability , 2000, Psychological science.

[40]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[41]  M. Tarr Visual Object Recognition: Can A Single Mechanism Suffice? , 1998 .

[42]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..