Planning to Behave: A Hybrid Deliberative/Reactive Robot Control Architecture for Mobile Manipulation

Hybrid architectures provide an e ective means for integrating world knowledge with reactive control. This paper describes the motivation behind the architectural decision to hybridize, and presents a case study in mobile manipulation in the context of the Autonomous Robot Architecture (AuRA).

[1]  Russell J. Clark,et al.  Case-Based Reactive Navigation: A Cased Based Method for On-Line Selection and Adaptation of Reactive Control Parameters in Autonomous Robotics Systems , 1992 .

[2]  Tucker R. Balch,et al.  Avoiding the past: a simple but effective strategy for reactive navigation , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[3]  Ronald C. Arkin,et al.  Buzz, An Instantiation of a Schema-Based Reactive Robotic System , 1993 .

[4]  Ronald C. Arkin,et al.  Modeling neural function at the schema level: implications and results for robotic control , 1993 .

[5]  D. Norman,et al.  Attention to action: Willed and automatic control , 1980 .

[6]  Ronald C. Arkin,et al.  Integrating behavioral, perceptual, and world knowledge in reactive navigation , 1990, Robotics Auton. Syst..

[7]  Ronald C. Arkin,et al.  Navigational path planning for a vision-based mobile robot , 1989, Robotica.

[8]  David W. Payton,et al.  An architecture for reflexive autonomous vehicle control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  Darwin Kuan,et al.  Mission Planning System for an Autonomous Vehicle , 1985, CAIA.

[10]  Ronald C. Arkin,et al.  Neuroscience in Motion: The Application of Schema Theory to Mobile Robotics , 1989 .

[11]  Robert James Firby,et al.  Adaptive execution in complex dynamic worlds , 1989 .

[12]  Reid G. Simmons,et al.  Concurrent planning and execution for a walking robot , 1990, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[14]  Mark B. Kadonoff,et al.  Arbitration of Multiple Control Strategies for Mobile Robots , 1987, Other Conferences.

[15]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[16]  A. Meystel Planning In A Hierarchical Nested Autonomous Control System , 1987, Other Conferences.

[17]  Ronald C. Arkin Towards Cosmopolitan Robot: Intelligent Navigation in Extended , 1987 .

[18]  Ronald C. Arkin,et al.  Integrated Control for Mobile Manipulation for Intelligent Materials Handling , 1992 .

[19]  Erann Gat Reliable goal-directed reactive control of autonomous mobile robots , 1991 .

[20]  Ronald C. Arkin,et al.  3D Navigational Path Planning , 1990, Robotica.

[21]  Marc Glenn Slack,et al.  Situationally driven local navigation for mobile robots , 1990 .

[22]  Ronald C. Arkin,et al.  Reactive control for mobile manipulation , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[23]  Joseph L. Jones,et al.  Mobile robots , 1993 .

[24]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[25]  Philip Kahn Specification and control of behavioral robot programs , 1992, Other Conferences.

[26]  David W. Payton,et al.  Multilevel Path Planning For Autonomous Vehicles , 1984, Other Conferences.

[27]  Tom M. Mitchell,et al.  Becoming Increasingly Reactive , 1990, AAAI.

[28]  Russell J. Clark,et al.  Learning momentum: online performance enhancement for reactive systems , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[29]  Lee Spector Supervenience in dynamic-world planning , 1992 .

[30]  Robin R. Murphy,et al.  Autonomous navigation in a manufacturing environment , 1990, IEEE Trans. Robotics Autom..

[31]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..