Sorting Signed Permutations by Inverse Tandem Duplication Random Losses

Gene order evolution of unichromosomal genomes, for example mitochondrial genomes, has been modelled mostly by four major types of genome rearrangements: inversions, transpositions, inverse transpositions, and tandem duplication random losses. Generalizing models that include all those rearrangements while admitting computational tractability are rare. In this paper, we study such a rearrangement model, namely the inverse tandem duplication random loss (iTDRL) model, where an iTDRL duplicates and inverts a continuous segment of a gene order followed by the random loss of one of the redundant copies of each gene. The iTDRL rearrangement has currently been proposed by several authors suggesting it to be a possible mechanisms of mitochondrial gene order evolution. We initiate the algorithmic study of this new model of genome rearrangement by proving that a shortest rearrangement scenario that transforms one given gene order into another given gene order can be obtained in quasilinear time. Furthermore, we show that the length of such a scenario, i.e., the minimum number of iTDRLs in the transformation, can be computed in linear time.

[1]  Guillaume Fertin,et al.  Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.

[2]  Matthias Bernt,et al.  Combinatorics of Tandem Duplication Random Loss Mutations on Circular Genomes , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  David Alan Christie,et al.  Genome rearrangement problems , 1998 .

[4]  Richard Friedberg,et al.  Efficient sorting of genomic permutations by translocation, inversion and block interchange , 2005, Bioinform..

[5]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[6]  P. Stadler,et al.  Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements , 2011, Nucleic acids research.

[7]  Matthias Bernt,et al.  CREx: inferring genomic rearrangements based on common intervals , 2007, Bioinform..

[8]  P. Berman,et al.  On Some Tighter Inapproximability Results , 1998, Electron. Colloquium Comput. Complex..

[9]  Jean-Luc Baril,et al.  Whole mirror duplication-random loss model and pattern avoiding permutations , 2010, Inf. Process. Lett..

[10]  Matthias Bernt,et al.  Finding all sorting tandem duplication random loss operations , 2009, J. Discrete Algorithms.

[11]  Shietung Peng,et al.  A 2-Approximation Algorithm for Genome Rearrangements by Reversals and Transpositions , 1999, Theor. Comput. Sci..

[12]  Mathilde Bouvel,et al.  Posets and permutations in the duplication-loss model: Minimal permutations with d descents , 2008, Theor. Comput. Sci..

[13]  R. Zardoya,et al.  A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. , 2005, Molecular biology and evolution.

[14]  João Meidanis,et al.  Reversal and transposition distance of linear chromosomes , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).

[15]  Ziniu Yu,et al.  A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion. , 2009, Genome.

[16]  Guohui Lin,et al.  Signed Genome Rearrangement by Reversals and Transpositions: Models and Approximations , 1999, COCOON.

[17]  Roded Sharan,et al.  Genome Rearrangement with ILP , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[18]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.

[20]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[21]  Anne Weigert,et al.  Evolution of mitochondrial gene order in Annelida. , 2016, Molecular phylogenetics and evolution.

[22]  Giuseppe Lancia,et al.  A Unified Integer Programming Model for Genome Rearrangement Problems , 2015, IWBBIO.

[23]  John-James Wilson,et al.  Conserved gene arrangement in the mitochondrial genomes of barklouse families Stenopsocidae and Psocidae , 2017 .

[24]  Complete mitogenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes , 2013, BMC Evolutionary Biology.

[25]  Alberto Caprara,et al.  Fast practical solution of sorting by reversals , 2000, SODA '00.

[26]  Anne Bergeron,et al.  Advances on sorting by reversals , 2007, Discret. Appl. Math..

[27]  T. Patarnello,et al.  The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura , 2017, Scientific Reports.

[28]  Guillaume Fertin,et al.  Sorting signed circular permutations by super short operations , 2018, Algorithms for Molecular Biology.

[29]  Satish Rao,et al.  On the tandem duplication-random loss model of genome rearrangement , 2006, SODA '06.

[30]  Matthias Bernt,et al.  Partially local three-way alignments and the sequence signatures of mitochondrial genome rearrangements , 2017, Algorithms for Molecular Biology.

[31]  Tzvika Hartman,et al.  A 1.375-Approximation Algorithm for Sorting by Transpositions , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[32]  Enno Ohlebusch,et al.  Sorting by Weighted Reversals, Transpositions, and Inverted Transpositions , 2006, RECOMB.

[33]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mathilde Bouvel,et al.  A variant of the tandem duplication - random loss model of genome rearrangement , 2008, Theor. Comput. Sci..

[35]  Matthias Bernt,et al.  An Exact Algorithm for Sorting by Weighted Preserving Genome Rearrangements , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[36]  P. Stadler,et al.  Genetic aspects of mitochondrial genome evolution. , 2013, Molecular phylogenetics and evolution.

[37]  David Sankoff,et al.  Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement , 1995, Algorithmica.

[38]  J. Boore,et al.  Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. , 2002, Molecular biology and evolution.

[39]  Yu Lin,et al.  Sorting signed permutations by inversions in O(nlogn) time. , 2010, Journal of computational biology : a journal of computational molecular cell biology.

[40]  Haim Kaplan,et al.  Faster and simpler algorithm for sorting signed permutations by reversals , 1997, SODA '97.

[41]  D. Sankoff,et al.  Parametric genome rearrangement. , 1996, Gene.