Self-Organization and Associative Memory

1. Various Aspects of Memory.- 1.1 On the Purpose and Nature of Biological Memory.- 1.1.1 Some Fundamental Concepts.- 1.1.2 The Classical Laws of Association.- 1.1.3 On Different Levels of Modelling.- 1.2 Questions Concerning the Fundamental Mechanisms of Memory.- 1.2.1 Where Do the Signals Relating to Memory Act Upon?.- 1.2.2 What Kind of Encoding is Used for Neural Signals?.- 1.2.3 What are the Variable Memory Elements?.- 1.2.4 How are Neural Signals Addressed in Memory?.- 1.3 Elementary Operations Implemented by Associative Memory.- 1.3.1 Associative Recall.- 1.3.2 Production of Sequences from the Associative Memory.- 1.3.3 On the Meaning of Background and Context.- 1.4 More Abstract Aspects of Memory.- 1.4.1 The Problem of Infinite-State Memory.- 1.4.2 Invariant Representations.- 1.4.3 Symbolic Representations.- 1.4.4 Virtual Images.- 1.4.5 The Logic of Stored Knowledge.- 2. Pattern Mathematics.- 2.1 Mathematical Notations and Methods.- 2.1.1 Vector Space Concepts.- 2.1.2 Matrix Notations.- 2.1.3 Further Properties of Matrices.- 2.1.4 Matrix Equations.- 2.1.5 Projection Operators.- 2.1.6 On Matrix Differential Calculus.- 2.2 Distance Measures for Patterns.- 2.2.1 Measures of Similarity and Distance in Vector Spaces.- 2.2.2 Measures of Similarity and Distance Between Symbol Strings.- 2.2.3 More Accurate Distance Measures for Text.- 3. Classical Learning Systems.- 3.1 The Adaptive Linear Element (Adaline).- 3.1.1 Description of Adaptation by the Stochastic Approximation.- 3.2 The Perceptron.- 3.3 The Learning Matrix.- 3.4 Physical Realization of Adaptive Weights.- 3.4.1 Perceptron and Adaline.- 3.4.2 Classical Conditioning.- 3.4.3 Conjunction Learning Switches.- 3.4.4 Digital Representation of Adaptive Circuits.- 3.4.5 Biological Components.- 4. A New Approach to Adaptive Filters.- 4.1 Survey of Some Necessary Functions.- 4.2 On the "Transfer Function" of the Neuron.- 4.3 Models for Basic Adaptive Units.- 4.3.1 On the Linearization of the Basic Unit.- 4.3.2 Various Cases of Adaptation Laws.- 4.3.3 Two Limit Theorems.- 4.3.4 The Novelty Detector.- 4.4 Adaptive Feedback Networks.- 4.4.1 The Autocorrelation Matrix Memory.- 4.4.2 The Novelty Filter.- 5. Self-Organizing Feature Maps.- 5.1 On the Feature Maps of the Brain.- 5.2 Formation of Localized Responses by Lateral Feedback.- 5.3 Computational Simplification of the Process.- 5.3.1 Definition of the Topology-Preserving Mapping.- 5.3.2 A Simple Two-Dimensional Self-Organizing System.- 5.4 Demonstrations of Simple Topology-Preserving Mappings.- 5.4.1 Images of Various Distributions of Input Vectors.- 5.4.2 "The Magic TV".- 5.4.3 Mapping by a Feeler Mechanism.- 5.5 Tonotopic Map.- 5.6 Formation of Hierarchical Representations.- 5.6.1 Taxonomy Example.- 5.6.2 Phoneme Map.- 5.7 Mathematical Treatment of Self-Organization.- 5.7.1 Ordering of Weights.- 5.7.2 Convergence Phase.- 5.8 Automatic Selection of Feature Dimensions.- 6. Optimal Associative Mappings.- 6.1 Transfer Function of an Associative Network.- 6.2 Autoassociative Recall as an Orthogonal Projection.- 6.2.1 Orthogonal Projections.- 6.2.2 Error-Correcting Properties of Projections.- 6.3 The Novelty Filter.- 6.3.1 Two Examples of Novelty Filter.- 6.3.2 Novelty Filter as an Autoassociative Memory.- 6.4 Autoassociative Encoding.- 6.4.1 An Example of Autoassociative Encoding.- 6.5 Optimal Associative Mappings.- 6.5.1 The Optimal Linear Associative Mapping.- 6.5.2 Optimal Nonlinear Associative Mappings.- 6.6 Relationship Between Associative Mapping, Linear Regression, and Linear Estimation.- 6.6.1 Relationship of the Associative Mapping to Linear Regression.- 6.6.2 Relationship of the Regression Solution to the Linear Estimator.- 6.7 Recursive Computation of the Optimal Associative Mapping.- 6.7.1 Linear Corrective Algorithms.- 6.7.2 Best Exact Solution (Gradient Projection).- 6.7.3 Best Approximate Solution (Regression).- 6.7.4 Recursive Solution in the General Case.- 6.8 Special Cases.- 6.8.1 The Correlation Matrix Memory.- 6.8.2 Relationship Between Conditional Averages and Optimal Estimator.- 7. Pattern Recognition.- 7.1 Discriminant Functions.- 7.2 Statistical Formulation of Pattern Classification.- 7.3 Comparison Methods.- 7.4 The Subspace Methods of Classification.- 7.4.1 The Basic Subspace Method.- 7.4.2 The Learning Subspace Method (LSM).- 7.5 Learning Vector Quantization.- 7.6 Feature Extraction.- 7.7 Clustering.- 7.7.1 Simple Clustering (Optimization Approach).- 7.7.2 Hierarchical Clustering (Taxonomy Approach).- 7.8 Structural Pattern Recognition Methods.- 8. More About Biological Memory.- 8.1 Physiological Foundations of Memory.- 8.1.1 On the Mechanisms of Memory in Biological Systems.- 8.1.2 Structural Features of Some Neural Networks.- 8.1.3 Functional Features of Neurons.- 8.1.4 Modelling of the Synaptic Plasticity.- 8.1.5 Can the Memory Capacity Ensue from Synaptic Changes?.- 8.2 The Unified Cortical Memory Model.- 8.2.1 The Laminar Network Organization.- 8.2.2 On the Roles of Interneurons.- 8.2.3 Representation of Knowledge Over Memory Fields.- 8.2.4 Self-Controlled Operation of Memory.- 8.3 Collateral Reading.- 8.3.1 Physiological Results Relevant to Modelling.- 8.3.2 Related Modelling.- 9. Notes on Neural Computing.- 9.1 First Theoretical Views of Neural Networks.- 9.2 Motives for the Neural Computing Research.- 9.3 What Could the Purpose of the Neural Networks be?.- 9.4 Definitions of Artificial "Neural Computing" and General Notes on Neural Modelling.- 9.5 Are the Biological Neural Functions Localized or Distributed?.- 9.6 Is Nonlinearity Essential to Neural Computing?.- 9.7 Characteristic Differences Between Neural and Digital Computers.- 9.7.1 The Degree of Parallelism of the Neural Networks is Still Higher than that of any "Massively Parallel" Digital Computer.- 9.7.2 Why the Neural Signals Cannot be Approximated by Boolean Variables.- 9.7.3 The Neural Circuits do not Implement Finite Automata.- 9.7.4 Undue Views of the Logic Equivalence of the Brain and Computers on a High Level.- 9.8 "Connectionist Models".- 9.9 How can the Neural Computers be Programmed?.- 10. Optical Associative Memories.- 10.1 Nonholographic Methods.- 10.2 General Aspects of Holographic Memories.- 10.3 A Simple Principle of Holographic Associative Memory.- 10.4 Addressing in Holographic Memories.- 10.5 Recent Advances of Optical Associative Memories.- Bibliography on Pattern Recognition.- References.