Interactions between membrane conductances underlying thalamocortical slow-wave oscillations.

Neurons of the central nervous system display a broad spectrum of intrinsic electrophysiological properties that are absent in the traditional "integrate-and-fire" model. A network of neurons with these properties interacting through synaptic receptors with many time scales can produce complex patterns of activity that cannot be intuitively predicted. Computational methods, tightly linked to experimental data, provide insights into the dynamics of neural networks. We review this approach for the case of bursting neurons of the thalamus, with a focus on thalamic and thalamocortical slow-wave oscillations. At the single-cell level, intrinsic bursting or oscillations can be explained by interactions between calcium- and voltage-dependent channels. At the network level, the genesis of oscillations, their initiation, propagation, termination, and large-scale synchrony can be explained by interactions between neurons with a variety of intrinsic cellular properties through different types of synaptic receptors. These interactions can be altered by neuromodulators, which can dramatically shift the large-scale behavior of the network, and can also be disrupted in many ways, resulting in pathological patterns of activity, such as seizures. We suggest a coherent framework that accounts for a large body of experimental data at the ion-channel, single-cell, and network levels. This framework suggests physiological roles for the highly synchronized oscillations of slow-wave sleep.

[1]  Maxim Bazhenov,et al.  Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[3]  Martin Deschênes,et al.  Electrophysiology and Pharmacology of the Corticothalamic Input to Lateral Thalamic Nuclei: an Intracellular Study in the Cat , 1990, The European journal of neuroscience.

[4]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[5]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  H. Lux,et al.  A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones , 1984, Nature.

[7]  T. Soderling,et al.  Calcium/calmodulin-dependent protein kinase II: role in learning and memory , 1993, Molecular and Cellular Biochemistry.

[8]  M. de Curtis,et al.  Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Curtis,et al.  Electrophysiological characteristics of morphologically identified reticular thalamic neurons from rat slices , 1988, Neuroscience.

[10]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[11]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[12]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[13]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[14]  R. Cone,et al.  Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. , 1992, The Journal of biological chemistry.

[15]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[16]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[17]  V S Sohal,et al.  Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology. , 1998, Journal of neurophysiology.

[18]  G. Stuart,et al.  Action Potential Backpropagation and Somato-dendritic Distribution of Ion Channels in Thalamocortical Neurons , 2000, The Journal of Neuroscience.

[19]  L. D. Partridge,et al.  Calcium-activated non-specific cation channels , 1988, Trends in Neurosciences.

[20]  N. Kopell,et al.  Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Golard,et al.  Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  H. Cline,et al.  Stabilization of dendritic arbor structure in vivo by CaMKII. , 1998, Science.

[23]  Michael A Long,et al.  Electrical Synapses in the Thalamic Reticular Nucleus , 2002, The Journal of Neuroscience.

[24]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[25]  D. Long,et al.  The Intact and Sliced Brain. , 2002 .

[26]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[27]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[28]  S. Murray Sherman,et al.  Dendritic Depolarization Efficiently Attenuates Low-Threshold Calcium Spikes in Thalamic Relay Cells , 2000, The Journal of Neuroscience.

[29]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[30]  D J Brooks,et al.  Temporally‐specific retrograde amnesia in two cases of discrete bilateral hippocampal pathology , 1999, Hippocampus.

[31]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[33]  K. Sanderson,et al.  The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat , 1971, The Journal of comparative neurology.

[34]  J. Eccles,et al.  The recording of potentials from motoneurones with an intracellular electrode , 1952, The Journal of physiology.

[35]  P. Reiner,et al.  Hyperpolarization-activated inward current in histaminergic tuberomammillary neurons of the rat hypothalamus. , 1991, Journal of Neurophysiology.

[36]  G Avanzini,et al.  Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. , 1989, The Journal of physiology.

[37]  T Seidenbecher,et al.  Relations between cortical and thalamic cellular activities during absence seizures in rats , 1998, The European journal of neuroscience.

[38]  D. Prince,et al.  Printed in Great Britain , 2005 .

[39]  Diego Minciacchi,et al.  Thalamic Networks for Relay and Modulation , 1993 .

[40]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[41]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.

[42]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[44]  S. Lindström Synaptic organization of inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. , 1982, Brain research.

[45]  A. Gonzalo-Ruiz,et al.  Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat , 1995, Brain Research Bulletin.

[46]  D. McCormick,et al.  Mechanisms of action of acetylcholine in the guinea‐pig cerebral cortex in vitro. , 1986, The Journal of physiology.

[47]  Ivan Soltesz,et al.  Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells , 1990, Neuroscience Letters.

[48]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[49]  V Crunelli,et al.  Backpropagation of the δ oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons , 2000, Neuroscience.

[50]  J. Bernstein,et al.  Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms , 1868, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[51]  R. Stickgold,et al.  Sleep, Learning, and Dreams: Off-line Memory Reprocessing , 2001, Science.

[52]  Golomb,et al.  Dynamics of globally coupled inhibitory neurons with heterogeneity. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  W. Dement,et al.  The effect of dream deprivation. , 1960, Science.

[54]  D Contreras,et al.  Spindle oscillations during cortical spreading depression in naturally sleeping cats. , 1997, Neuroscience.

[55]  LM Boland,et al.  Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: kinetics and voltage dependence , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  A. Depaulis,et al.  Involvement of intrathalamic GABA b neurotransmission in the control of absence seizures in the rat , 1992, Neuroscience.

[57]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[58]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[59]  Y. Yarom,et al.  Rhythmogenesis in a hybrid system—interconnecting an olivary neuron to an analog network of coupled oscillators , 1991, Neuroscience.

[60]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[61]  A. Coenen,et al.  Effects of the GABAB antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats , 1996, Brain Research Bulletin.

[62]  R. North,et al.  Cation current activated by hyperpolarization (IH) in guinea pig enteric neurons. , 1990, The American journal of physiology.

[63]  Allen I. Selverston,et al.  Model Neural Networks and Behavior , 1985, Springer US.

[64]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[65]  J. Frost,et al.  Single-unit discharges in isolated cerebral cortex. , 1966, Experimental neurology.

[66]  G. V. Wallenstein The role of thalamic IGABAb in generating spike‐wave discharges during petit mal seizures , 1994, Neuroreport.

[67]  Sylvie Renaud,et al.  Hybrid Circuits of Interacting Computer Model and Biological Neurons , 1992, NIPS.

[68]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[69]  Robert E. Wyatt,et al.  A computational model of spindle oscillations , 1995 .

[70]  Mircea Steriade,et al.  Dendrodendritic synapses in the cat reticularis thalami nucleus: a structural basis for thalamic spindle synchronization , 1985, Brain Research.

[71]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[72]  B. Bontempi,et al.  Time-dependent reorganization of brain circuitry underlying long-term memory storage , 1999, Nature.

[73]  G. Moruzzi The Functional Significance of Sleep with Particular Regard to the Brain Mechanisms Underlying Consciousness , 1965 .

[74]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[75]  J R Huguenard,et al.  Nucleus-Specific Chloride Homeostasis in Rat Thalamus , 1997, The Journal of Neuroscience.

[76]  O D Creutzfeldt,et al.  Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. , 1966, Electroencephalography and clinical neurophysiology.

[77]  J. Huguenard,et al.  Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. , 1999, Science.

[78]  V. Crunelli,et al.  Computer simulation of the pacemaker oscillations of thalamocortical cells. , 1992, Neuroreport.

[79]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[80]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  S. Lindstro¨m Synaptic organization of inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat , 1982, Brain Research.

[82]  M Steriade,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. , 1984, Journal of neurophysiology.

[83]  S. Sherman,et al.  Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. , 1992, Journal of neurophysiology.

[84]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[85]  C. W. Watson,et al.  Bilateral synchronous spike wave electrographic patterns in the cat. Interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. , 1966, Archives of neurology.

[86]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[87]  M K Bennett,et al.  Biochemical and immunochemical evidence that the "major postsynaptic density protein" is a subunit of a calmodulin-dependent protein kinase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[88]  E. Geijo-Barrientos,et al.  Laminar Localization, Morphology, and Physiological Properties of Pyramidal Neurons that Have the Low-Threshold Calcium Current in the Guinea-Pig Medial Frontal Cortex , 1996, The Journal of Neuroscience.

[89]  J R Huguenard,et al.  GABAB receptor‐mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. , 1996, The Journal of physiology.

[90]  M. Rogawski,et al.  T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Jacques Duysens,et al.  Thalamic multiple-unit activity underlying spike-wave discharges in anesthetized rats , 1993, Brain Research.

[92]  Jung-Ha Lee,et al.  Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family , 1999, The Journal of Neuroscience.

[93]  J. Eccles,et al.  Interpretation of action potentials evoked in the cerebral cortex. , 1951, Electroencephalography and clinical neurophysiology.

[94]  J R Huguenard,et al.  GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. , 1997, Journal of neurophysiology.

[95]  D Contreras,et al.  Electrophysiological properties of cat reticular thalamic neurones in vivo. , 1993, The Journal of physiology.

[96]  A. Destexhe,et al.  Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? , 1999, The European journal of neuroscience.

[97]  L. Squire,et al.  The primate hippocampal formation: evidence for a time-limited role in memory storage. , 1990, Science.

[98]  A J Sefton,et al.  Connections between the reticular nucleus of the thalamus and pulvinar‐lateralis posterior complex: A WGA‐HRP study , 1995, The Journal of comparative neurology.

[99]  D. L. Bassett,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1946 .

[100]  D. Pinault,et al.  Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy , 1998, The Journal of physiology.

[101]  E. G. Jones,et al.  Thalamic oscillations and signaling , 1990 .

[102]  G. H. Bishop THE INTERPRETATION OF CORTICAL POTENTIALS , 1936 .

[103]  D. McCormick,et al.  Periodicity of thalamic spindle waves is abolished by ZD7288,a blocker of Ih. , 1998, Journal of neurophysiology.

[104]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[105]  Michael L. Hines,et al.  NEURON — A Program for Simulation of Nerve Equations , 1993 .

[106]  V. Crunelli,et al.  A T‐type Ca2+ current underlies low‐threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. , 1989, The Journal of physiology.

[107]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[108]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[109]  W. A. Wilson,et al.  The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. , 1992, Science.

[110]  L. Widén,et al.  Effects of corticipetal and corticifugal impulses upon single elements of the dorsolateral geniculate nucleus. , 1960, Experimental neurology.

[111]  P Alvarez,et al.  Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[113]  W. Lytton,et al.  Computer model of antiepileptic effects mediated by alterations in GABAA‐mediated inhibition , 1998, Neuroreport.

[114]  A. Babloyantz,et al.  Cortical Coherent Activity Induced by Thalamic Oscillations , 1992 .

[115]  M. Wilson,et al.  Coordinated Interactions between Hippocampal Ripples and Cortical Spindles during Slow-Wave Sleep , 1998, Neuron.

[116]  G. V. Wallenstein Adenosinic modulation of 7–14 Hz spindle rhythms in interconnected thalamic relay and nucleus reticularis neurons , 1996, Neuroscience.

[117]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[118]  Frédéric Bremer,et al.  L'activité électrique de l'écorce cérébrale , 1938 .

[119]  Terrence J. Sejnowski,et al.  G-Protein Activation Kinetics And Spill-Over Of Gaba May Account For Differences Between Inhibitory , 1995 .

[120]  R. Vertes,et al.  The case against memory consolidation in REM sleep. , 2000, The Behavioral and brain sciences.

[121]  A. J. Derbyshire,et al.  THE EFFECTS OF ANESTHETICS ON ACTION POTENTIALS IN THE CEREBRAL CORTEX OF THE CAT , 1936 .

[122]  N. Spitzer,et al.  Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients , 1995, Nature.

[123]  Maria V. Sanchez-Vives,et al.  Inhibitory Interactions between Perigeniculate GABAergic Neurons , 1997, The Journal of Neuroscience.

[124]  G Oakson,et al.  Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. , 1986, The Journal of physiology.

[125]  S. Shenolikar,et al.  Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. , 1998, Science.

[126]  I. Soltesz,et al.  Intrinsic Low-Frequency Oscillations of Thalamocortical Cells and their Modulation by Synaptic Potentials , 1993 .

[127]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[128]  D. Prince,et al.  Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. , 1994, Journal of neurophysiology.

[129]  N. Hagiwara,et al.  Modulation by intracellular Ca2+ of the hyperpolarization‐activated inward current in rabbit single sino‐atrial node cells. , 1989, The Journal of physiology.

[130]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  X. Wang Multiple dynamical modes of thalamic relay neurons: Rhythmic bursting and intermittent phase-locking , 1994, Neuroscience.

[132]  M. Verzeano,et al.  Neuronal Activity in Cortical and Thalamic Networks : A study with multiple microelectrodes , 1960 .

[133]  D R Fish,et al.  Demonstration of thalamic activation during typical absence seizures using H2(15)O and PET. , 1995, Neurology.

[134]  D. Contreras,et al.  Cortically-induced coherence of a thalamic-generated oscillation , 1999, Neuroscience.

[135]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[136]  C. Stevens,et al.  Inward and delayed outward membrane currents in isolated neural somata under voltage clamp , 1971, The Journal of physiology.

[137]  M. Steriade Cortical long-axoned cells and putative interneurons during the sleep-waking cycle , 1978, Behavioral and Brain Sciences.

[138]  E. G. Jones,et al.  The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[140]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[141]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[142]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[143]  J. Eccles Brain and Conscious Experience , 1965 .

[144]  E. Adrian Afferent discharges to the cerebral cortex from peripheral sense organs , 1941, The Journal of physiology.

[145]  D. Coulter,et al.  Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro. , 1997, Journal of neurophysiology.

[146]  S. Charpak,et al.  Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. , 1998, Journal of neurophysiology.

[147]  U. Kuhnt,et al.  Spread of epileptiform potentials in the neocortical slice: recordings with voltage-sensitive dyes , 1993, Brain Research.

[148]  E. G. Jones,et al.  Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat , 1999, The Journal of comparative neurology.

[149]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[150]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[151]  R. R. Sturrock,et al.  Problems of the Keimbahn: New Work on Mammalian Germ Cell Lineage , 1985 .

[152]  M. Yahr,et al.  Corticothalamic projections and sensorimotor activities , 1972 .

[153]  J. Magee,et al.  Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. , 1999, Journal of neurophysiology.

[154]  C. Stevens,et al.  Voltage clamp studies of a transient outward membrane current in gastropod neural somata , 1971, The Journal of physiology.

[155]  D. McCormick,et al.  Serotonin and noradrenaline excite GABAergic neurones of the guinea‐pig and cat nucleus reticularis thalami. , 1991, The Journal of physiology.

[156]  P. Andersen,et al.  Simulation of a Neuronal Network operating Rhythmically through Recurrent Inhibition , 1964, Nature.

[157]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[158]  D. Contreras,et al.  Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. , 1998, Journal of neurophysiology.

[159]  S. Murray Sherman,et al.  A wake-up call from the thalamus , 2001, Nature Neuroscience.

[160]  R. Iyengar,et al.  Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[161]  P. Gloor,et al.  A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features , 1981, Experimental Neurology.

[162]  J. Hindmarsh,et al.  A model of intrinsic and driven spindling in thalamocortical neurons. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[163]  E. Kandel,et al.  Genetic Demonstration of a Role for PKA in the Late Phase of LTP and in Hippocampus-Based Long-Term Memory , 1997, Cell.

[164]  J. Csicsvari,et al.  Replay and Time Compression of Recurring Spike Sequences in the Hippocampus , 1999, The Journal of Neuroscience.

[165]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[166]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[167]  M. Kelly,et al.  Electrophysiology of guinea‐pig supraoptic neurones: role of a hyperpolarization‐activated cation current in phasic firing. , 1993, The Journal of physiology.

[168]  C AJMONE-MARSAN,et al.  Thalamic control of certain normal and abnormal cortical rhythms. , 1956, Electroencephalography and clinical neurophysiology.

[169]  H. Jasper,et al.  ELECTROENCEPHALOGRAPHIC CLASSIFICATION OF THE EPILEPSIES , 1941 .

[170]  M Steriade,et al.  Intracellular study of excitability in the seizure-prone neocortex in vivo. , 1999, Journal of neurophysiology.

[171]  E. Niedermeyer,et al.  Primary (Idiopathic) Generalized Epilepsy and Underlying Mechanisms , 1996, Clinical EEG.

[172]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[173]  F. Bremer Cerebral and cerebellar potentials. , 1958, Physiological reviews.

[174]  E. White,et al.  A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex , 1982, Journal of neurocytology.

[175]  Elizabeth Thomas,et al.  Increased Synchrony with Increase of a Low-Threshold Calcium Conductance in a Model Thalamic Network: A Phase-Shift Mechanism , 2000, Neural Computation.

[176]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[177]  L F Quesney,et al.  Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. , 1977, Electroencephalography and clinical neurophysiology.

[178]  A. Agmon,et al.  Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. , 1994, Journal of neurophysiology.

[179]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[180]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[181]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[182]  J. Hobson The Dreaming Brain , 1988 .

[183]  H. Robinson,et al.  Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons , 1993, Journal of Neuroscience Methods.

[184]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[185]  J. Rinzel,et al.  Clustering in globally coupled inhibitory neurons , 1994 .

[186]  A. Hernández-Cruz,et al.  Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. , 1989, Journal of neurophysiology.

[187]  Jean-Michel Deniau,et al.  Activity of Thalamic Reticular Neurons during Spontaneous Genetically Determined Spike and Wave Discharges , 2002, The Journal of Neuroscience.

[188]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[189]  J. A. Horne,et al.  The consolidation hypothesis for REM sleep function: Stress and other confounding factors — A review , 1984, Biological Psychology.

[190]  J Gotman,et al.  An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. , 1983, Journal of neurophysiology.

[191]  D. Prince,et al.  A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[192]  A. Scheibel,et al.  The organization of the nucleus reticularis thalami: a Golgi study. , 1966, Brain research.

[193]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[194]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[195]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[196]  R. Llinás,et al.  Of dreaming and wakefulness , 1991, Neuroscience.

[197]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[198]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[199]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[200]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[201]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[202]  J. Hindmarsh,et al.  The assembly of ionic currents in a thalamic neuron I. The three-dimensional model , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[203]  D. Coulter,et al.  GABAA receptor function in developing rat thalamic reticular neurons: whole cell recordings of GABA-mediated currents and modulation by clonazepam. , 1996, Journal of neurophysiology.

[204]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[205]  Alain Destexhe,et al.  LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations , 2001, Neurocomputing.

[206]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[207]  M. Steriade To burst, or rather, not to burst , 2001, Nature Neuroscience.

[208]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[209]  T. Sejnowski,et al.  Modeling the control of reticular thalamic oscillations by neuromodulators. , 1994, Neuroreport.

[210]  S. Siegelbaum,et al.  Molecular mechanism of cAMP modulation of HCN pacemaker channels , 2001, Nature.

[211]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[212]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[213]  J. Tigges,et al.  Cross-Correlation Analysis of Electroencephalographic Potentials and Slow Membrane Transients , 1965, Science.

[214]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[215]  T. Sejnowski,et al.  G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[216]  G. L. Masson,et al.  Feedback inhibition controls spike transfer in hybrid thalamic circuits , 2002, Nature.

[217]  D. Contreras,et al.  Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (≈40 HZ) spike-bursts at ≈1000 HZ during waking and rapid eye movement sleep , 1993, Neuroscience.

[218]  T. J. Sejnowski,et al.  Self–sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials , 1999, Nature Neuroscience.

[219]  D. Contreras,et al.  Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. , 1997, Journal of neurophysiology.

[220]  O. Snead Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. , 1992, European journal of pharmacology.

[221]  The selective GABAB antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model , 1996, Brain Research.

[222]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[223]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[224]  M. Deschenes,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. , 1984, Journal of neurophysiology.

[225]  C. L. Chapman,et al.  Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. , 2001, Bio Systems.

[226]  J. Rinzel,et al.  Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons , 1993, Neuroscience.

[227]  P Heggelund,et al.  The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea‐pig thalamic slices. , 1994, The Journal of physiology.

[228]  T. Mcmullen,et al.  Model of oscillatory activity in thalamic neurons: Role of voltage- and calcium-dependent ionic conductances , 1988, Biological Cybernetics.

[229]  A. Destexhe,et al.  Cortical Feedback Controls the Frequency and Synchrony of Oscillations in the Visual Thalamus , 2000, The Journal of Neuroscience.

[230]  D. Brooks,et al.  Demonstration of thalarnic activation during typical absence seizures using H2 15O and PET , 1995, Neurology.

[231]  Alain Destexhe,et al.  The initiation of bursts in thalamic neurons and the cortical control of thalamic sensitivity. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[232]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[233]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[234]  T. Katada,et al.  On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel , 1992, The Journal of general physiology.

[235]  M Steriade,et al.  Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. , 2000, Journal of neurophysiology.

[236]  T. Sejnowski,et al.  Sleep and Memory , 2022 .

[237]  T J Sejnowski,et al.  Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. , 1993, Biophysical journal.

[238]  M. Deschenes,et al.  Dendrodendritic and Axoaxonic Synapses in the Thalamic Reticular Nucleus of the Adult Rat , 1997, The Journal of Neuroscience.

[239]  D. Hosford,et al.  Differential effects mediated by GABAA receptors in thalamic nuclei in lh/lh model of absence seizures , 1997, Epilepsy Research.

[240]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[241]  W. Fishbein,et al.  Paradoxical sleep and memory storage processes. , 1977, Behavioral biology.

[242]  J. Rinzel,et al.  A model of the T-type calcium current and the low-threshold spike in thalamic neurons. , 1991, Journal of neurophysiology.

[243]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[244]  D. Perkel,et al.  Motor Pattern Production in Reciprocally Inhibitory Neurons Exhibiting Postinhibitory Rebound , 1974, Science.

[245]  I. Soltesz,et al.  GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. , 1992, Progress in brain research.

[246]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[247]  R. Iyengar,et al.  Postsynaptic CAMP pathway gates early LTP in hippocampal CA1 region , 1995, Neuron.

[248]  J. Schlag,et al.  Electrophysiological properties of units of the thalamic reticular complex. , 1971, Experimental neurology.

[249]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[250]  B. Renshaw,et al.  ACTIVITY OF ISOCORTEX AND HIPPOCAMPUS: ELECTRICAL STUDIES WITH MICRO-ELECTRODES , 1940 .

[251]  F W Sharbrough,et al.  Computer simulation of neuronal circuit models of rhythmic behavior in the electroencephalogram. , 1988, Computers in biology and medicine.

[252]  Jerome M. Siegel,et al.  The REM Sleep-Memory Consolidation Hypothesis , 2001, Science.

[253]  D. Prince,et al.  GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. , 1997, Journal of neurophysiology.

[254]  D. Pollen INTRACELLULAR STUDIES OF CORTICAL NEURONS DURING THALAMIC INDUCED WAVE AND SPIKE. , 1964, Electroencephalography and clinical neurophysiology.

[255]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[256]  R. North,et al.  Cation current activated by hyperpolarization in a subset of rat nucleus accumbens neurons. , 1990, Journal of neurophysiology.

[257]  Brigitte M. Bouwman,et al.  The effects of vigabatrin on type II spike wave discharges in rats , 2003, Neuroscience Letters.

[258]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[259]  J. Born,et al.  Early sleep triggers memory for early visual discrimination skills , 2000, Nature Neuroscience.

[260]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[261]  E. Marder,et al.  Artificial electrical synapses in oscillatory networks. , 1992, Journal of neurophysiology.

[262]  M. Vergnes,et al.  Cortical and thalamic lesions in rats with genetic absence epilepsy. , 1992, Journal of neural transmission. Supplementum.

[263]  D. McCormick,et al.  Corticothalamic Inputs Control the Pattern of Activity Generated in Thalamocortical Networks , 2000, The Journal of Neuroscience.

[264]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[265]  Hans-Christian Pape,et al.  Voltage‐activated intracellular calcium transients in thalamic relay cells and interneurons , 1997, Neuroreport.

[266]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[267]  Hellmuth Petsche,et al.  Synchronization of EEG Activity in Epilepsies , 1972, Springer Vienna.

[268]  J. Edeline,et al.  Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size. , 2000, Journal of neurophysiology.

[269]  Françoise Bremer,et al.  Considérations sur l'origine et la nature des ⪡ ondes ⪢ cérébrales , 1949 .

[270]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[271]  P. Gloor,et al.  Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy , 1988, Trends in Neurosciences.

[272]  Michel Imbert,et al.  Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience , 2004, Experimental Brain Research.

[273]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[274]  T. Sejnowski,et al.  Computer model of ethosuximide's effect on a thalamic neuron , 1992, Annals of neurology.

[275]  M. Avoli,et al.  Spindle-like thalamocortical synchronization in a rat brain slice preparation. , 2000, Journal of neurophysiology.

[276]  D. Prince,et al.  Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[277]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[278]  N. Weinberger,et al.  Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[279]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[280]  K. Grant,et al.  Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers , 1982, Brain Research.

[281]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[282]  Thomas Budde,et al.  Lack of Regulation by Intracellular Ca2+ of the Hyper Polarization‐Activated Cation Current in Rat Thalamic Neurones , 1997, The Journal of physiology.

[283]  J. Gotman,et al.  A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features , 1981, Experimental Neurology.

[284]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[285]  Edward L. White,et al.  Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of a monosynaptic feedback loop , 1981, Neuroscience Letters.

[286]  W. Lytton,et al.  Computer model of clonazepam's effect in thalamic slice , 1997, Neuroreport.

[287]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[288]  Edmund M. Talley,et al.  Differential Distribution of Three Members of a Gene Family Encoding Low Voltage-Activated (T-Type) Calcium Channels , 1999, The Journal of Neuroscience.

[289]  A. Depaulis,et al.  Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mallike epilepsy , 1984, Neuroscience Letters.

[290]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[291]  P Andersen,et al.  Nature of thalamo‐cortical relations during spontaneous barbiturate spindle activity , 1967, The Journal of physiology.

[292]  T. Salt,et al.  Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro , 1998, The Journal of physiology.

[293]  E. Evarts TEMPORAL PATTERNS OF DISCHARGE OF PYRAMIDAL TRACT NEURONS DURING SLEEP AND WAKING IN THE MONKEY. , 1964, Journal of neurophysiology.

[294]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[295]  M. Castro-Alamancos,et al.  Neocortical Synchronized Oscillations Induced by Thalamic Disinhibition In Vivo , 1999, The Journal of Neuroscience.

[296]  W. Burke,et al.  Inhibitory mechanisms in lateral geniculate nucleus of rat , 1966, The Journal of physiology.

[297]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[298]  M. Verzeano Pacemakers, Synchronization, and Epilepsy , 1972 .

[299]  P. Adams,et al.  Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. , 1997, Journal of neurophysiology.

[300]  P. Gloor,et al.  Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy , 1979, Experimental Neurology.

[301]  M. Deschenes,et al.  The thalamus as a neuronal oscillator , 1984, Brain Research Reviews.

[302]  J. Minderhoud,et al.  An anatomical study of the efferent connections of the thalamic reticular nucleus , 1971, Experimental Brain Research.

[303]  W. Giles,et al.  Voltage clamp measurements of the hyperpolarization‐activated inward current I(f) in single cells from rabbit sino‐atrial node. , 1991, The Journal of physiology.

[304]  S. Andersson,et al.  Physiological basis of the alpha rhythm , 1968 .

[305]  Maria V. Sanchez-Vives,et al.  Functional Properties of Perigeniculate Inhibition of Dorsal Lateral Geniculate Nucleus Thalamocortical Neurons In Vitro , 1997, The Journal of Neuroscience.

[306]  M E Greenberg,et al.  Calcium signaling in neurons: molecular mechanisms and cellular consequences. , 1995, Science.

[307]  D. Williams,et al.  A study of thalamic and cortical rhythms in petit mal. , 1953, Brain : a journal of neurology.

[308]  A. Scheibel,et al.  Structural organization of nonspecific thalamic nuclei and their projection toward cortex. , 1967, Brain research.

[309]  E. Kandel,et al.  Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. , 1993, Science.

[310]  E. G. Jones,et al.  Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[311]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[312]  H. Pape,et al.  Contribution of GABAA and GABAB Receptors to Thalamic Neuronal Activity during Spontaneous Absence Seizures in Rats , 2001, The Journal of Neuroscience.

[313]  R. Tsien,et al.  Three types of neuronal calcium channel with different calcium agonist sensitivity , 1985, Nature.

[314]  L. Danober,et al.  Pathophysiological mechanisms of genetic absence epilepsy in the rat , 1998, Progress in Neurobiology.

[315]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[316]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[317]  S. Hughes,et al.  Dynamic clamp study of Ih modulation of burst firing and δ oscillations in thalamocortical neurons in vitro , 1998, Neuroscience.

[318]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[319]  Frank H. Eeckman,et al.  Neural Systems: Analysis and Modeling , 2012, Springer US.

[320]  T. Reese,et al.  Inhibition of Endogenous Phosphatase in a Postsynaptic Density Fraction Allows Extensive Phosphorylation of the Major Postsynaptic Density Protein , 1993, Journal of neurochemistry.

[321]  G. Buzsáki,et al.  Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[322]  M. Stryker,et al.  Sleep Enhances Plasticity in the Developing Visual Cortex , 2001, Neuron.

[323]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[324]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[325]  B. Cohen Cellular Basis of Behavior , 1977, Neurology.

[326]  D. J. Adams,et al.  Ionic currents in molluscan soma. , 1980, Annual review of neuroscience.

[327]  Yousheng Shu,et al.  Inhibitory interactions between ferret thalamic reticular neurons. , 2002, Journal of neurophysiology.

[328]  M Steriade,et al.  Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. , 1974, Electroencephalography and clinical neurophysiology.

[329]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[330]  P. Gloor,et al.  Transition from spindles to generalized spike and wave discharges in the cat: Simultaneous single-cell recordings in cortex and thalamus , 1984, Experimental Neurology.

[331]  P Gloor,et al.  The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. , 1977, Electroencephalography and clinical neurophysiology.

[332]  T. Katada,et al.  GK* and brain G beta gamma activate muscarinic K+ channel through the same mechanism. , 1993, The Journal of biological chemistry.

[333]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[334]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[335]  P Heggelund,et al.  Quantal properties of spontaneous EPSCs in neurones of the guinea‐pig dorsal lateral geniculate nucleus. , 1996, The Journal of physiology.

[336]  Roger Y. Tsien,et al.  Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression , 1998, Nature.

[337]  V. Crunelli,et al.  Model of a thalamocortical neurone with dendritic voltage-gated ion channels. , 1996, Neuroreport.

[338]  B. McNaughton,et al.  Memory trace reactivation in hippocampal and neocortical neuronal ensembles , 2000, Current Opinion in Neurobiology.

[339]  O D Creutzfeldt,et al.  Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. , 1966, Electroencephalography and clinical neurophysiology.

[340]  G. V. Wallenstein,et al.  A model of the electrophysiological properties of nucleus reticularis thalami neurons. , 1994, Biophysical journal.

[341]  A. Depaulis,et al.  Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat , 1991, Brain Research.

[342]  M. Deschenes,et al.  Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[343]  S. Sherman,et al.  Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. , 2000, Journal of neurophysiology.

[344]  H. Lux,et al.  A low voltage-activated calcium conductance in embryonic chick sensory neurons. , 1984, Biophysical journal.

[345]  J. Hindmarsh,et al.  A model for rebound bursting in mammalian neurons. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[346]  P. Gloor,et al.  The Effects of Transient Functional Depression of the Thalamus on Spindles and on Bilateral Synchronous Epileptic Discharges of Feline Generalized Penicillin Epilepsy , 1981, Epilepsia.

[347]  J. Hobson,et al.  Visual Discrimination Task Improvement: A Multi-Step Process Occurring During Sleep , 2000, Journal of Cognitive Neuroscience.

[348]  A Babloyantz,et al.  A model of the inward current Ih and its possible role in thalamocortical oscillations. , 1993, Neuroreport.

[349]  D. McCormick,et al.  Functional implications of burst firing and single spike activity in lateral geniculate relay neurons , 1990, Neuroscience.

[350]  Thalamic spindles in an isolated and perfused preparation in vitro , 1990, Brain Research.

[351]  T. J. Sejnowski,et al.  Control of slow oscillations in the thalamocortical neuron: a computer model , 1996, Neuroscience.

[352]  C. Stevens,et al.  Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma , 1971, The Journal of physiology.

[353]  D. Contreras,et al.  Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency , 2001, The Journal of Neuroscience.

[354]  Alain Destexhe,et al.  Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex , 2000, Journal of Physiology-Paris.

[355]  N. Kopell,et al.  Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[356]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[357]  A. VanDongen,et al.  Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. , 1988, Science.

[358]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[359]  J. Eccles,et al.  Inhibitory Phasing of Neuronal Discharge , 1962, Nature.

[360]  Agnessa Babloyantz,et al.  Pacemaker-Induced Coherence in Cortical Networks , 1991, Neural Computation.

[361]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[362]  W. Singer,et al.  Precisely Synchronized Oscillatory Firing Patterns Require Electroencephalographic Activation , 1999, The Journal of Neuroscience.

[363]  D. Ulrich,et al.  GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. , 2001, Journal of neurophysiology.

[364]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.