Neuronal Operations in the Visual Cortex

1 The Visual System of Cat and Monkey Compared.- 1.1 The Basic Layout of the Visual System in Cat, Owl Monkey, and Rhesus Monkey.- 1.1.1 The Retina.- 1.1.2 The Optic Chiasm and Optic Tract.- 1.1.3 The Dorsal Lateral Geniculate Nucleus (dLGN).- 1.1.4 Visual Cortex.- 1.1.5 Pulvinar.- 1.1.6 Callosal Connections.- 1.2 Quantitative Aspects of the Retino-Geniculo-Cortical Projections.- 1.2.1 The Overall Numbers of Cells in the Visual Pathway.- 1.2.2 Distribution of Retinal Cell Populations.- 1.2.3 Magnification Factors.- 1.3 Conclusion.- 2 The Visual Cortical Areas of the Cat.- 2.1 Description of the Visual Cortical Areas.- 2.1.1 Area 17: The Prototype of Visual Cortical Areas.- 2.1.2 Areas 18 and 19.- 2.1.3 The Lateral Suprasylvian Areas.- 2.1.4 Areas 20 and 21.- 2.1.5 Additional Visual Areas?.- 2.2 The Levels of Processing in the Visual Cortical System of the Cat.- 2.3 Additional Observations on the Retinotopic Organization in the Primary Complex.- 2.3.1 Variability of the 3 Cortical Maps.- 2.3.2 RF Scatter.- 2.3.3 The 17-18 Border and the Question of the Naso-Temporal Overlap.- 2.3.4 The 18-19 Border and the Question of the Visual Field Islands.- 2.4 Conclusion.- 3 Afferent Projections to Areas 17, 18, 19 of the Cat: Evidence for Parallel Input.- 3.1 The Relay of Retinal Afferents: The Dorsal Lateral Geniculate Nuclear Complex.- 3.2 The Geniculocortical Projection.- 3.3 Functional Streams in the Retino-Geniculocortical Projection.- 3.3.1 Functional Properties of Retinal and Geniculate X, Y, W Cells.- 3.3.2 Correlation with Retinal Morphology.- 3.3.3 Separation of Functional Streams at LGN Level.- 3.3.4 Correlation with LGN Morphological Types.- 3.3.5 Distribution of Functional Streams in dLGN Nuclear Complex.- 3.3.6 Input to Different Areas of Primary Visual Complex.- 3.4 Physiological Identification of the Functional Type of Afferents to Areas 17, 18 and 19.- 3.5 The Termination of Geniculate Afferents in the Visual Cortex.- 3.6 Other Subcortical Afferents: Pulvinar-Lateralis Posterior Complex, Intralaminar Nuclei, Claustrum, and Brainstem.- 3.7 The Ipsilateral Corticocortical Connections.- 3.8 The Connections Through the Corpus Callosum.- 3.9 Conclusion.- 4 Receptive Field Organization in Areas 17, 18 and 19 of the Cat.- 4.1 Twenty Years with the Simple-Complex-Hypercomplex Scheme.- 4.2 Criteria for Classifying Cortical RFs.- 4.2.1 The ON-OFF Overlap or the Parcellation of the RF into Subregions.- 4.2.2 Position Test.- 4.2.3 RF Dimensions.- 4.2.4 End-Stopping or the Hypercomplex Property.- 4.3 The A, B, C, S Scheme.- 4.3.1 Properties and Distribution of Cell Types.- 4.3.2 The S and A Families.- 4.3.3 Responses to Other Stimuli.- 4.4 Correspondence of the A, B, C, S Scheme with Other Classification Schemes.- 4.5 Conclusion.- 5 Parameter Specificity of Visual Cortical Cells and Coding of Visual Parameters.- 5.1 The Tuned Cells as Bandpass Filters: The Multichannel Representation of a Parameter.- 5.2 Are All Tuned Cells Simple (Passive) Bandpass Filters or Are Some of Them Active Filters?.- 5.3 Cells with Thresholds as High-Pass Filters: Single or Multichannel Representation of a Parameter.- 5.4 Conclusion.- 6 Influence of Luminance and Contrast on Cat Visual Cortical Neurons.- 6.1 Contrast-Response Curves Obtained with Sinusoidal Gratings.- 6.2 Contrast-Response Curves Obtained with Slits.- 6.3 The Extreme Contrast Sensitivity at the 18-19 Border.- 6.4 Influence of Contrast and Luminance on Other Response Properties.- 6.5 Conclusion.- 7 Coding of Spatial Parameters by Cat Visual Cortical Neurons: Influence of Stimulus Orientation, Length, Width, and Spatial Frequency.- 7.1 Orientation Tuning of Cortical Cells.- 7.1.1 Definitions and Criteria.- 7.1.2 Quantitative Determinations: Orientation-Response Curves.- 7.1.3 Qualitative Determination: Hand-Plotting.- 7.1.4 Distribution of Preferred Orientations.- 7.1.5 Orientation Columns.- 7.1.6 Conclusion.- 7.2 Influence of Stimulus Length on Cortical Cells.- 7.3 Selectivity of Cortical Neurons for Spatial Frequency and Stimulus Width.- 7.3.1 Selectivity for Spatial Frequency.- 7.3.2 Spatial Frequency and Coding of Stimulus Dimensions.- 7.3.3 Linearity of Cortical Cells.- 7.3.4 The Visual Cortex as a Fourier Analyzer.- 7.3.5 Spatial Frequency: Conclusion.- 7.4 Spatial Parameters: Conclusion.- 8 Coding of Spatio-Temporal Parameters by Cat Visual Cortical Neurons: Influence of Stimulus Velocity Direction and Amplitude of Movement.- 8.1 Influence of Stimulus Velocity.- 8.2 Influence of the Direction of Movement.- 8.3 Influence of Stimulus Movement Amplitude.- 8.4 Conclusion.- 9 Binocular Interactions in Cat Visual Cortical Cells and Coding of Parameters Involved in Static and Dynamic Depth Perception.- 9.1 The Binocularity of Cortical Cells and the Ocular Dominance Scheme.- 9.2 Position Disparity Tuning Curves and the Coding of Static Depth.- 9.3 Orientation Disparity, Another Mechanism for Static Depth Discrimination?.- 9.4 Neuronal Mechanisms Underlying Dynamic Depth Perception (Motion in Depth).- 9.5 Conclusion.- 10 The Output of the Cat Visual Cortex.- 10.1 The Projections of Layer V to the Superior Colliculus, Pons, Pretectum, and Pulvinar-LP Complex.- 10.2 The Projections of Layer VI to the dLGN and the Claustrum.- 10.3 The Commissural Projections.- 10.4 The Associative Corticocortical Projections.- 10.5 Conclusion.- 11 Correlation Between Geniculate Afferents and Visual Cortical Response Properties in the Cat.- 11.1 Electrical Stimulation of the Visual Pathways.- 11.2 The Question of ON or OFF Cell Input to Cortical S Cells.- 11.3 Other Attempts to Identify the LGN Input to Cortical Cells.- 11.4 Conclusion.- 12 Intracortical Mechanisms Underlying Properties of Cat Visual Cortical Cells.- 12.1 The Role of Intracortical Inhibition.- 12.1.1 Orientation Selectivity.- 12.1.2 Direction Selectivity.- 12.1.3 End-Stopping.- 12.1.4 Ocular Dominance.- 12.1.5 Velocity Upper Cut-Off.- 12.1.6 Absence of Response to Two-Dimensional Noise.- 12.2 Properties of the Intracortical Inhibitions.- 12.3 The Structural Counterpart of Inhibitions.- 12.4 Conclusion.- 13 Non-Visual Influences on Cat Visual Cortex.- 13.1 Non-Visual Sensory Inputs to the Visual Cortex.- 13.2 Influence of Eye Movements on Visual Cortical Cells.- 13.3 The Influence of Sleep and Anesthesia.- 14 Response Properties of Monkey Striate Neurons.- 14.1 Retinotopic Organization of Area 17.- 14.2 The Input-Output Relations of Monkey Striate Cortex.- 14.3 Receptive Field Organization and Size.- 14.4 Color Specificity in Monkey Striate Cortex.- 14.5 Influence of Light Intensity and Contrast on Monkey Striate Neurons.- 14.6 Influence of Spatial Parameters.- 14.7 Influence of Spatio-Temporal Parameters.- 14.8 Ocular Dominance Distribution and Depth Sensitivity.- 14.9 Columnar Organization and Functional Architecture of Striate Cortex.- 14.10 Correlation Between Response Properties and Afferent Input.- 14.11 Conclusion.- 15 Conclusion: Signification of Visual Cortical Function in Perception.- 15.1 Operating Principles in Cat Visual Cortex.- 15.1.1 Retinotopic Organization.- 15.1.2 Filtering.- 15.1.3 "Columnar" Organization.- 15.1.4 Distributed Processing in the Primary Complex.- 15.1.5 Changes with Eccentricity.- 15.1.6 Parallel Streams Within each Area.- 15.2 The Cat and Monkey Visual Cortex as a Model: The Question of the Relationship Between Animal Physiology and Human Visual Perception.- 15.3 The Role of the Primary Visual Cortex in Visual Perception: The Significance of Parameter Specificities for Object Recognition.- References.

[1]  B. D. Thuma Studies on the diencephalon of the cat. I. The cyto‐architecture of the corpus geniculatum laterale , 1928 .

[2]  Maynard C. Wheeler,et al.  Visual Acuity within the Area Centralis and its Relation to Eye Movements and Fixation , 1928 .

[3]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[4]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[5]  J. Jirout,et al.  The efferent intercortical connections of the superficial cortex of the temporal lobe, Macaca mulatta. , 1949, Journal of neuropathology and experimental neurology.

[6]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[7]  Frederick C. Cordes,et al.  The Vertebrate Visual System, Stephen Polyak (Ed.). the University of Chicago Press, Chicago (1957), 1390, 546 illustrations, index, bibliography. Price: $45.00. , 1958 .

[8]  K Murata,et al.  Neuronal convergence of noxious, acoustic, and visual stimuli in the visual cortex of the cat. , 1965, Journal of neurophysiology.

[9]  J. Stone A quantitative analysis of the distribution of ganglion cells in the cat's retina , 1965, The Journal of comparative neurology.

[10]  J. Stone,et al.  The naso-temporal division of the cat's retina. , 1966, The Journal of comparative neurology.

[11]  C. Trevarthen,et al.  Two mechanisms of vision in primates , 1968, Psychologische Forschung.

[12]  D. N. Spinelli,et al.  Auditory specificity in unit recordings from cat's visual cortex. , 1968, Experimental neurology.

[13]  G. Schneider Two visual systems. , 1969, Science.

[14]  K. Toyama,et al.  Synaptic action of commissural impulses upon association efferent cells in cat visual cortex. , 1969, Brain research.

[15]  M Mishkin,et al.  Further evidence on the locus of the visual area in the temporal lobe of the monkey. , 1969, Experimental neurology.

[16]  F. Sanides,et al.  Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. , 1969, Journal fur Hirnforschung.

[17]  K Matsunami,et al.  Antidromic identification of association, commissural and corticofugal efferent cells in cat visual cortex. , 1969, Brain research.

[18]  J. Sprague,et al.  Thalamo‐cortical organization of the visual system in the cat , 1970, The Journal of comparative neurology.

[19]  G Rizzolatti,et al.  Unit responses to visual stimuli in the cat's superior colliculus after removal of the visual cortex. , 1970, Brain Research.

[20]  L. Palmer,et al.  Visual receptive field properties of cells of the superior colliculus after cortical lesions in the cat. , 1971, Experimental neurology.

[21]  J. R. Lee,et al.  How Does the Striate Cortex Begin the Reconstruction of the Visual World? , 1971, Science.

[22]  S. Sherman,et al.  Nasotemporal overlap in visual field projected to lateral geniculate nucleus in the cat. , 1971, Journal of neurophysiology.

[23]  J. Stone,et al.  Conduction velocity as a parameter in the organisation of the afferent relay in the cat's lateral geniculate nucleus. , 1971, Brain research.

[24]  K. Shoumura Patterns of fiber degeneration in the lateral wall of the suprasylvian gyrus (Clare-Bishop area) following lesions in the visual cortex in cats. , 1972, Brain research.

[25]  K. Shoumura,et al.  Intercortical projections from the lateral wall of the suprasylvian gyrus, the Clare-Bishop area, of the cat. , 1972, Brain research.

[26]  FRANK MORRELL,et al.  Visual System's View of Acoustic Space , 1972, Nature.

[27]  J. Stone,et al.  Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? , 1972, Brain research.

[28]  R. B. Freeman,et al.  Neuronal Correlates of Eye Movements in the Visual Cortex of the Cat , 1972, Science.

[29]  J. Stone,et al.  Sampling properties of microelectrodes assessed in the cat's retina. , 1973, Journal of neurophysiology.

[30]  J. Stone,et al.  Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. , 1973, Journal of neurophysiology.

[31]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[32]  K. Niimi,et al.  The dorsal thalamus of the cat and comparison with monkey and man. , 1973, Journal fur Hirnforschung.

[33]  Donald M. MacKay,et al.  Visual Stability and Voluntary Eye Movements , 1973 .

[34]  R. H. Steinberg,et al.  The distribution of rods and cones in the retina of the cat (Felis domesticus) , 1973, The Journal of comparative neurology.

[35]  K. Kawamura Corticocortical fiber connections of the cat cerebrum. I. The temporal region. , 1973, Brain research.

[36]  J. Stone,et al.  The naso‐temporal division of the monkey's retina , 1973, The Journal of comparative neurology.

[37]  D. Whitteridge,et al.  The visual areas in the splenial sulcus of the cat , 1973, Journal of Physiology.

[38]  Nitrous oxide--is it an adequate anaesthetic? , 1973 .

[39]  J. Szentágothai Synaptology of the Visual Cortex , 1973 .

[40]  W. R. Adey,et al.  Visual cortical units associated with phasic activity in REM sleep and wakefulness. , 1973, Brain research.

[41]  K. Toyama,et al.  A unique class of cat's visual cortical cells that exhibit either ON or OFF excitation for stationary light slits and are responsive to moving edge patterns. , 1974, Brain research.

[42]  L. Palmer,et al.  An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. , 1974, Brain research.

[43]  J. Kaas,et al.  Projections from the pulvinar to the middle temporal visual area (MT) in the owl monkey, Aotus trivirgatus. , 1974, Brain research.

[44]  G M Innocenti,et al.  Post-synaptic inhibitory components of the responses to moving stimuli in area 17. , 1974, Brain research.

[45]  J. Stone,et al.  Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. , 1974, Journal of neurophysiology.

[46]  D. V. van Essen,et al.  Cell structure and function in the visual cortex of the cat , 1974, The Journal of physiology.

[47]  J. D. Berry,et al.  Anesthetic potency (MAC) of nitrous oxide in the dog, cat, and stump-tail monkey , 1974 .

[48]  K. Shoumura An attempt to relate the origin and distribution of commissural fibers to the presence of large and medium pyramids in layer III in the cat's visual cortex. , 1974, Brain research.

[49]  J. Sprague,et al.  Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat , 1974, The Journal of comparative neurology.

[50]  G. Johansson Visual motion perception. , 1975, Scientific American.

[51]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[52]  W Singer,et al.  Cat parastriate cortex: a primary or secondary visual area. , 1975, Journal of neurophysiology.

[53]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[54]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[55]  T. Ogden The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones , 1975, The Journal of comparative neurology.

[56]  G. Poggio,et al.  Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey , 1975, Brain Research.

[57]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[58]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[59]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[60]  Movement-sensitive neurones in the peripheral projections of area 18 of the cat G. A. Orban — Laboratorium voor Neuro- en Psychofysiologie, B-3000 Louvain (Belgium) , 1975, Brain Research.

[61]  D. Pollen,et al.  Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. , 1975, The Journal of physiology.

[62]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of striate cortical neurones , 1975, Nature.

[63]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[64]  R. Maciewicz Thalamic afferents to areas 17, 18 and 19 of cat cortex traced with horseradish peroxidase , 1975, Brain Research.

[65]  G. Orban,et al.  Unit responses to moving stimuli in area 18 of the cat , 1975, Brain Research.

[66]  T. Powell Bilateral cortico-tectal projection from the visual cortex in the cat , 1976, Nature.

[67]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[68]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[69]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[70]  D. W. Watkins,et al.  Further differences in receptive field properties of simple and complex cells in cat striate cortex , 1976, Vision Research.

[71]  J. Kaas,et al.  The sizes and distribution of ganglion cells in the retina of the owl monkey, aotus trivirgatus , 1976, Vision Research.

[72]  E. Murphy,et al.  Alterations in receptive field properties of superior colliculus cells produced by visual cortex ablation in infant and adult cats , 1976, The Journal of comparative neurology.

[73]  J. Stone,et al.  Properties of ganglion cells in the visual streak of the cat's retina , 1976, The Journal of comparative neurology.

[74]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[75]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[76]  J. Stone,et al.  Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. , 1976, Journal of neurophysiology.

[77]  A. Hendrickson,et al.  Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection , 1976, Experimental Neurology.

[78]  T. Kasamatsu Visual cortical neurons influenced by the oculomotor input: Characterization of their receptive field properties , 1976, Brain Research.

[79]  W. Singer,et al.  The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex , 1976, Brain Research.

[80]  A. Sillito,et al.  The contribution of excitatory and inhibitory inputs to the length preference of hypercomplex cells in layers II and III of the cat's striate cortex , 1977, The Journal of physiology.

[81]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[82]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[83]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[84]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[85]  M. Kimura,et al.  Convergence of retinal inputs onto visual cortical cells: II. A study of the cells disynaptically excited from the lateral geniculate body , 1977, Brain Research.

[86]  K. Maekawa,et al.  Convergence of retinal inputs onto visual cortical cells: I. A study of the cells monosynaptically excited from the lateral geniculate body , 1977, Brain Research.

[87]  C. Shatz,et al.  A comparison of visual pathways in Boston and Midwestern Siamese cats , 1977, The Journal of comparative neurology.

[88]  C. Shatz Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats , 1977, The Journal of comparative neurology.

[89]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[90]  L. Maffei,et al.  Spatial frequency rows in the striate visual cortex , 1977, Vision Research.

[91]  G. H. Jacobs Visual capacities of the owl monkey (Aotus trivirgatus)—I. Spectral sensitivity and color vision , 1977, Vision Research.

[92]  C. Shatz Abnormal interhemispheric connections in the visual system of boston siamese cats: A physiological study , 1977, The Journal of comparative neurology.

[93]  S. Sherman,et al.  Percentage of relay cells in the cat's lateral geniculate nucleus , 1977, Brain Research.

[94]  G. Orban Area 18 of the Cat: The First Step in Processing Visual Movement Information , 1977, Perception.

[95]  D. Rose Responses of single units in cat visual cortex to moving bars of light as a function of bar length , 1977, The Journal of physiology.

[96]  J. Levy,et al.  Visual cortical areas mediating form discrimination in the cat , 1977, The Journal of comparative neurology.

[97]  A. Sillito The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells , 1977, The Journal of physiology.

[98]  J M Allman,et al.  Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison , 1977, Science.

[99]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[100]  G. H. Jacobs Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity , 1977, Vision Research.

[101]  P. O. Bishop,et al.  Discrimination of orientation and position disparities by binocularly activated neurons in cat straite cortex. , 1977, Journal of neurophysiology.

[102]  R. Kalil,et al.  Cytoplasmic laminated bodies in the lateral geniculate nucleus of normal and dark reared cats , 1978, The Journal of comparative neurology.

[103]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[104]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[105]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[106]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[107]  H Sherk,et al.  Area 18 cell responses in cat during reversible inactivation of area 17. , 1978, Journal of neurophysiology.

[108]  D. Regan,et al.  Looming detectors in the human visual pathway , 1978, Vision Research.

[109]  D. Regan,et al.  Illusory motion in depth: Aftereffect of adaptation to changing size , 1978, Vision Research.

[110]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[111]  K. Albus,et al.  The corticopontine projection from the visual cortex of the cat: An autoradiographic investigation , 1978, The Journal of comparative neurology.

[112]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[113]  P. O. Bishop,et al.  Hypercomplex and simple/complex cell classifications in cat striate cortex. , 1978, Journal of neurophysiology.

[114]  G. Orban,et al.  Influence of eccentricity on velocity characteristics of area 18 neurones in the cat , 1978, Brain Research.

[115]  J. Stone,et al.  The number and distribution of ganglion cells in the cat's retina , 1978, The Journal of comparative neurology.

[116]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[117]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[118]  D. Riche,et al.  Some claustro‐cortical connections in the cat and baboon as studied by retrograde horseradish persocidase transport , 1978, The Journal of comparative neurology.

[119]  T. Tsumoto Inhibitory and excitatory binocular convergence to visual cortical neurons of the cat , 1978, Brain Research.

[120]  D. Tolhurst,et al.  Variation in the spatial frequency selectivity of neurones in the cat visual cortex [proceedings]. , 1979, Journal of Physiology.

[121]  D. Rose Mechanisms underlying the receptive field properties of neurons in cat visual cortex , 1979, Vision Research.

[122]  A. Sillito Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. , 1979, The Journal of physiology.

[123]  L. Benevento,et al.  A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey , 1979, Brain Research.

[124]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[125]  Jonathan Stone,et al.  Hierarchical and parallel mechanisms in the organization of visual cortex , 1979, Brain Research Reviews.

[126]  C Galletti,et al.  Single unit responses to visual stimuli in cat cortical areas 17 and 18. III.--Responses to moving stimuli of variable velocity. , 1979, Archives italiennes de biologie.

[127]  J. Kaas,et al.  The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex , 1979, The Journal of comparative neurology.

[128]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[129]  M. S. Loop,et al.  Cat color vision: The effect of stimulus size, shape and viewing distance , 1979, Vision Research.

[130]  P. D. Spear,et al.  Effects of visual cortex removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat. , 1979, Journal of neurophysiology.

[131]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[132]  G. Sandini,et al.  Responses of visual cortical cells to periodic and non‐periodic stimuli. , 1979, The Journal of physiology.

[133]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[134]  D. Regan,et al.  Neurons in area 18 of cat visual cortex selectively sensitive to changing size: Nonlinear interactions between responses to two edges , 1979, Vision Research.

[135]  J R Bartlett,et al.  Luxotonic responses of units in macaque striate cortex. , 1979, Journal of neurophysiology.

[136]  P. O. Bishop,et al.  Sustained and transient responses by cat striate cells to stationary flashing light and dark bars , 1979, Brain Research.

[137]  P. O. Bishop,et al.  Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. , 1979, Journal of neurophysiology.

[138]  P. O. Bishop,et al.  End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. , 1979, Journal of neurophysiology.

[139]  S. Murray Sherman,et al.  Morphology of physiologically identified neurons in the visual cortex of the cat , 1979, Brain Research.

[140]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[141]  L. Benevento,et al.  Extrageniculate thalamic projections to the primary visual cortex , 1980, Brain Research.

[142]  M. L. Schmidt,et al.  A quantitiative study of the occurrence and distribution of cytoplasmic laminated bodies in the lateral geniculate nucleus of the normal adult cat , 1980, The Journal of comparative neurology.

[143]  L. Palmer,et al.  Retinotopic organization of areas 20 and 21 in the cat , 1980, The Journal of comparative neurology.

[144]  J. Stone,et al.  Correlation between soma size and dendritic morphology in cat retinal ganglion cells: Evidence of further variation in the γ‐cell class , 1980, The Journal of comparative neurology.

[145]  C. Galletti,et al.  Autoradiographic evidence for projections from cortical visual areas 17, 18, 19 and the Clare-Bishop area to the ipsilateral claustrum in the cat , 1980, Neuroscience Letters.

[146]  C. Capaday,et al.  Nitrous oxide modifies visual responses in the cat retina, striate cortex and superior colliculus , 1980, Brain Research.

[147]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[148]  T. Tsumoto,et al.  Three groups of cortico‐geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex , 1980, The Journal of comparative neurology.

[149]  K. Tanaka,et al.  Three classes of area 19 cortical cells of the cat classified by their neuronal connectivity and photic responsiveness , 1980, Vision Research.

[150]  A. Rosenquist,et al.  Connections of the parvocellular C laminae of the dorsal lateral geniculate nucleus with the visual cortex in the cat , 1980, Brain Research.

[151]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[152]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[153]  S. Petersen,et al.  Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey , 1980, Brain Research.

[154]  P. D. Spear,et al.  Effects of monocular deprivation on neurons in cat's lateral suprasylvian visual area. I. Comparison of binocular and monocular segments. , 1980, Journal of neurophysiology.

[155]  K. Kawamura,et al.  Corticocortical neurons projecting to the medial and lateral banks of the middle suprasylvian sulcus in the cat: An experimental study with the horseradish peroxidase method , 1980, The Journal of comparative neurology.

[156]  H. Hirsch,et al.  Receptive-field properties of different classes of neurons in visual cortex of normal and dark-reared cats. , 1980, Journal of neurophysiology.

[157]  M. Silverman,et al.  Spatial frequency columns in primary visual cortex. , 1981, Science.

[158]  G. Orban,et al.  Response to movement of neurons in areas 17 and 18 of the cat: velocity sensitivity. , 1981, Journal of neurophysiology.

[159]  D. M. MacKay,et al.  Strife over visual cortical function , 1981, Nature.

[160]  L. Palmer,et al.  Comparison of responses to moving and stationary stimuli in cat striate cortex. , 1981, Journal of neurophysiology.

[161]  K. Niimi,et al.  Thalamic afferents to the visual cortex in the cat studied by retrograde axonal transport of horseradish peroxidase. , 1981, Brain, behavior and evolution.

[162]  B. R. Payne,et al.  Organization of direction preferences in cat visual cortex , 1981, Brain Research.

[163]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[164]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[165]  J. Stone,et al.  The topography of primate retina: A study of the human, bushbaby, and new‐ and old‐world monkeys , 1981, The Journal of comparative neurology.

[166]  M. Stryker,et al.  Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex , 1981, Nature.

[167]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[168]  K. Albus,et al.  Topography and cortical projections of morphologically identified neurons in the visual thalamus of the cat , 1981, The Journal of comparative neurology.

[169]  R. Guillery,et al.  Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat , 1981, Neuroscience.

[170]  Direction selectivity in human visual perception, investigated with low contrast gratings. , 1981, Acta psychologica.

[171]  H. Wässle,et al.  Almost all ganglion cells in the rabbit retina project to the superior colliculus , 1981, Brain Research.

[172]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[173]  A. Rosenquist,et al.  Retinotopic organization in the cat lateral posterior-pulvinar complex , 1981, Brain Research.

[174]  A. Schoppmann,et al.  Projections from areas 17 and 18 of the visual cortex to the nucleus of the optic tract , 1981, Brain Research.

[175]  P. O. Bishop,et al.  Binocular interaction on monocularly discharged lateral geniculate and striate neurons in the cat. , 1981, Journal of neurophysiology.

[176]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[177]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[178]  V Virsu,et al.  Phase of responses to moving sinusoidal gratings in cells of cat retina and lateral geniculate nucleus. , 1981, Journal of neurophysiology.

[179]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[180]  D. C. Essen,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[181]  G. Innocenti,et al.  Callosal connections of suprasylvian visual areas in the cat , 1981, Neuroscience.

[182]  S. Sherman,et al.  Morphology of physiologically identified W-cells in the C laminae of the cat's lateral geniculate nucleus , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[183]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[184]  C. Galletti,et al.  An autoradiographic study of bilateral cortical projections from cat area 19 and lateral suprasylvian visual area. , 1981, Archives italiennes de biologie.

[185]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[186]  G. Orban,et al.  The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat , 1981, Brain Research.

[187]  S. Levay,et al.  Visual claustrum: topography and receptive field properties in the cat. , 1981, Science.

[188]  A. Cowey,et al.  Combined golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey , 1981, The Journal of comparative neurology.

[189]  C. Galletti,et al.  Bilateral cortical projections from cat visual areas 17 and 18. An autoradiographic study. , 1981, Archives italiennes de biologie.

[190]  R. Shapley,et al.  Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. , 1981, Journal of neurophysiology.

[191]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[192]  S. Levay,et al.  The visual claustrum of the cat. II. The visual field map , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[193]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[194]  D. Pollen,et al.  Spatial computation performed by simple and complex cells in the visual cortex of the cat , 1982, Vision Research.

[195]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[196]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[197]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[198]  M. Segraves,et al.  The distribution of the cells of origin of callosal projections in cat visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[199]  R E Weller,et al.  Cortical connections of striate cortex in the owl monkey , 1982, The Journal of comparative neurology.

[200]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[201]  J Bullier,et al.  Comparison of response of properties of three types of monosynaptic S-cell in cat striate cortex. , 1982, Journal of Neurophysiology.

[202]  D. Regan Visual information channeling in normal and disordered vision. , 1982, Psychological review.

[203]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[204]  M. Segraves,et al.  The afferent and efferent callosal connections of retinotopically defined areas in cat cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[205]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[206]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[207]  V. Casagrande,et al.  Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). , 1982, Journal of neurophysiology.

[208]  B. Dreher,et al.  Functional morphology of beta cells in the area centralis of the cat's retina: a model for the evolution of central retinal specializations. , 1982, Brain, behavior and evolution.

[209]  R. Young,et al.  Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[210]  M Sur,et al.  Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus. , 1982, Journal of neurophysiology.

[211]  D. Marr,et al.  Representation and recognition of the movements of shapes , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[212]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[213]  G. Orban,et al.  Meridional variations in the line orientation discrimination of the cat , 1983, Behavioural Brain Research.

[214]  G A Orban,et al.  Response properties of visual cortical neurons in cats reared in stroboscopic illumination. , 1983, Journal of neurophysiology.

[215]  T. Imig,et al.  Organization of the thalamocortical auditory system in the cat. , 1983, Annual review of neuroscience.

[216]  J. P. Jones,et al.  Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. , 1984, Journal of neurophysiology.