Connectionist Models and Their Properties

Much of the progress in the fields constituting cognitive science has been based upon the use of explicit information processing models, almost exclusively patterned after conventional serial computers. An extension of these ideas to massively parallel, connectionist models appears to offer a number of advantages. After a preliminary discussion, this paper introduces a general connectionist model and considers how it might be used in cognitive science. Among the issues addressed are: stability and noise-sensitivity, distributed decision-making, time and sequence problems, and the representation of complex concepts.

[1]  Walter Dandy,et al.  The Brain , 1966 .

[2]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[3]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Lance J. Rips,et al.  Structure and process in semantic memory: A featural model for semantic decisions. , 1974 .

[5]  Allan Collins,et al.  A spreading-activation theory of semantic processing , 1975 .

[6]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[7]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[8]  S. W. Kuffler,et al.  From neuron to brain: A cellular approach to the function of the nervous system , 1976 .

[9]  R. Didday A model of visuomotor mechanisms in the frog optic tectum , 1976 .

[10]  Stephen A. Ritz,et al.  Distinctive features, categorical perception, and probability learning: some applications of a neural model , 1977 .

[11]  C. Malsburg,et al.  How to label nerve cells so that they can interconnect in an ordered fashion. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[13]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[14]  M. Posner Chronometric explorations of mind , 1978 .

[15]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[16]  D. Perkel,et al.  Calibrating compartmental models of neurons. , 1978, The American journal of physiology.

[17]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[18]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[19]  Carl A. Sunshine,et al.  Formal Techniques for Protocol Specification and Verification , 1979, Computer.

[20]  D H Hubel,et al.  Brain mechanisms of vision. , 1979, Scientific American.

[21]  J. S. Barlow The mindful brain: B.M. Edelman and V.B. Mountcastle (MIT Press, Cambridge, Mass., 1978, 100 p., U.S. $ 10.00) , 1979 .

[22]  M. Arbib,et al.  Neurolinguistics must be computational , 1979 .

[23]  Shimon Ullman,et al.  Relaxation and constrained optimization by local processes , 1979 .

[24]  Wayne A. Wickelgren,et al.  Chunking and consolidation: A theoretical synthesis of semantic networks configuring in conditioning , 1979 .

[25]  John M. Prager,et al.  Extracting and Labeling Boundary Segments in Natural Scenes , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[27]  D. Hebb,et al.  The Nature of Thought : Essays in Honor of D.o. Hebb , 1980 .

[28]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[29]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[30]  S. Grossberg Biological competition: Decision rules, pattern formation, and oscillations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[32]  Scott E. Fahlman,et al.  The hashnet interconnection scheme , 1980 .

[33]  Scott E. Fahlman,et al.  NETL: A System for Representing and Using Real-World Knowledge , 1979, CL.

[34]  Dana H. Ballard,et al.  Parameter Networks: Towards a Theory of Low-Level Vision , 1981, IJCAI.

[35]  John D. Lowrance,et al.  An Inference Technique for Integrating Knowledge from Disparate Sources , 1981, IJCAI.

[36]  W Daniel Hillis,et al.  The Connection Machine (Computer Architecture for the New Wave). , 1981 .

[37]  Kenneth D. Forbus Qualitative Reasoning about Physical Processes , 1981, IJCAI.

[38]  Jerome A. Feldman,et al.  Computing with Connections , 1981 .

[39]  Mark Stefik,et al.  Planning with Constraints (MOLGEN: Part 1) , 1981, Artif. Intell..

[40]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[41]  Daniel Sabbah,et al.  Design Of A Highly Parallel Visual Recognition System , 1981, IJCAI.

[42]  Michael A. Arbib,et al.  Perceptual Structures and Distributed Motor Control , 1981 .

[43]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[44]  Donald A. Norman,et al.  A Psychologist Views Human Processing: Human Errors and Other Phenomena Suggest Processing Mechanisms , 1981, IJCAI.

[45]  Joseph JáJá,et al.  Parallel Algorithms in Graph Theory: Planarity Testing , 1982, SIAM J. Comput..

[46]  Dana H. Ballard,et al.  Rigid body motion from depth and optical flow , 1983, Comput. Vis. Graph. Image Process..