New insights into the classification and nomenclature of cortical GABAergic interneurons

A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

[1]  S. Stricker Handbuch der Lehre von den Geweben des Menschen und der Thiere , 1871 .

[2]  D. Santiago Ramon Y Cajal,et al.  Nuevo Concepto de la Histologia de los Centros Nerviosos , 1893, The Indian Medical Gazette.

[3]  E. Clarke The human brain and spinal cord , 1968 .

[4]  Russell N. DeJong The Human Brain and Spinal Cord , 1969, Neurology.

[5]  David G. Stork,et al.  Pattern Classification , 1973 .

[6]  P. Rakić Local circuit neurons. , 1975, Neurosciences Research Program bulletin.

[7]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[8]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[9]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[10]  R. Malach Cortical columns as devices for maximizing neuronal diversity , 1994, Trends in Neurosciences.

[11]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[12]  Miguel Marín-Padilla,et al.  Cajal–Retzius cells and the development of the neocortex , 1998, Trends in Neurosciences.

[13]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[14]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[15]  A. Fairén,et al.  What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. , 1999, Cerebral cortex.

[16]  P. Hof,et al.  Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns , 1999, Journal of Chemical Neuroanatomy.

[17]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[19]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[20]  Javier DeFelipe,et al.  Cortical interneurons: from Cajal to 2001. , 2002, Progress in brain research.

[21]  C. Englund,et al.  Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. , 2003, Brain research. Developmental brain research.

[22]  E. García Changing views of Cajal's neuron , 2003 .

[23]  F. Valverde The organization of area 18 in the monkey , 1978, Anatomy and Embryology.

[24]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[25]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[26]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[27]  Kathleen S Rockland,et al.  Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter , 2007, The Journal of comparative neurology.

[28]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[29]  J. Allman,et al.  Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals , 2009, Brain Structure and Function.

[30]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[31]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[32]  Maryann E. Martone,et al.  Ontologies for Neuroscience: What are they and What are they Good for? , 2008, Frontiers in neuroscience.

[33]  Demian Battaglia,et al.  Classification of NPY-Expressing Neocortical Interneurons , 2009, The Journal of Neuroscience.

[34]  C. Portera-Cailliau,et al.  Neuroanatomy Original Research Article , 2022 .

[35]  Kathleen S. Rockland,et al.  Five Points on Columns , 2010, Front. Neuroanat..

[36]  Gerardo Hermosillo,et al.  Learning From Crowds , 2010, J. Mach. Learn. Res..

[37]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[38]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[39]  S. Anderson,et al.  Origins of neocortical interneurons in mice , 2011, Developmental neurobiology.

[40]  Concha Bielza,et al.  Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks , 2011, Neuroinformatics.

[41]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[42]  Maryann E. Martone,et al.  An ontological approach to describing neurons and their relationships , 2012, Front. Neuroinform..

[43]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.