EEG-based asynchronous BCI control of a car in 3D virtual reality environments

Brain computer interface (BCI) aims at creating new communication channels without depending on brain’s normal output channels of peripheral nerves and muscles. However, natural and sophisticated interactions manner between brain and computer still remain challenging. In this paper, we investigate how the duration of event-related desynchronization/synchronization (ERD/ERS) caused by motor imagery (MI) can be modulated and used as an additional control parameter beyond simple binary decisions. Furthermore, using the non-time-locked properties of sustained (de)synchronization, we have developed an asynchronous BCI system for driving a car in 3D virtual reality environment (VRE) based on cumulative incremental control strategy. The extensive real time experiments confirmed that our new approach is able to drive smoothly a virtual car within challenging VRE only by the MI tasks without involving any muscular activities.

[1]  Jerald D. Kralik,et al.  Real-time prediction of hand trajectory by ensembles of cortical neurons in primates , 2000, Nature.

[2]  Fusheng Yang,et al.  BCI competition 2003-data set IV:An algorithm based on CSSD and FDA for classifying single-trial EEG , 2004, IEEE Transactions on Biomedical Engineering.

[3]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[4]  B. Kamousi,et al.  Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[6]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[7]  Cuntai Guan,et al.  Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface , 2007, NeuroImage.

[8]  Dennis J. McFarland,et al.  Brain–computer interfaces for communication and control , 2002, Clinical Neurophysiology.

[9]  Gabriel Curio,et al.  MACHINE LEARNING TECHNIQUES FOR BRAIN-COMPUTER INTERFACES , 2004 .

[10]  K. Jellinger Toward Brain-Computer Interfacing , 2009 .

[11]  Klaus-Robert Müller,et al.  The Berlin Brain-Computer Interface: Machine Learning Based Detection of User Specific Brain States , 2006, J. Univers. Comput. Sci..

[12]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[13]  Eberhard E. Fetz,et al.  Real-time control of a robotic arm by neuronal ensembles , 1999, Nature Neuroscience.

[14]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[15]  S. Meagher Instant neural control of a movement signal , 2002 .

[16]  Clemens Brunner,et al.  Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks , 2006, NeuroImage.

[17]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[18]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[19]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[21]  D.J. McFarland,et al.  The Wadsworth Center brain-computer interface (BCI) research and development program , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[22]  Miguel A. L. Nicolelis,et al.  Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex , 1999, Nature Neuroscience.

[23]  Gert Pfurtscheller,et al.  Walking from thought , 2006, Brain Research.

[24]  G. Pfurtscheller,et al.  Designing optimal spatial filters for single-trial EEG classification in a movement task , 1999, Clinical Neurophysiology.

[25]  G. Pfurtscheller,et al.  Graz-BCI: state of the art and clinical applications , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  R. Andersen,et al.  Cognitive Control Signals for Neural Prosthetics , 2004, Science.

[27]  John P. Donoghue,et al.  Connecting cortex to machines: recent advances in brain interfaces , 2002, Nature Neuroscience.

[28]  Klaus-Robert Müller,et al.  Toward noninvasive brain-computer interfaces , 2006, IEEE Signal Process. Mag..

[29]  J Werner,et al.  A fiberoptic sensor system for cardiac monitoring and electrotherapy / Ein faseroptisches Sensorsystem für das Monitoring und die Elektrotherapie des Herzens , 2004, Biomedizinische Technik. Biomedical engineering.

[30]  Klaus-Robert Müller,et al.  Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing , 2006, IEEE Transactions on Biomedical Engineering.

[31]  K.-R. Muller,et al.  Linear and nonlinear methods for brain-computer interfaces , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[32]  F. L. D. Silva,et al.  Beta rebound after different types of motor imagery in man , 2005, Neuroscience Letters.

[33]  Klaus-Robert Müller,et al.  The Berlin Brain-Computer Interface (BBCI) – towards a new communication channel for online control in gaming applications , 2007, Multimedia Tools and Applications.

[34]  R Thull,et al.  Vergleichende Untersuchungen zur Eignung eines neuen Oberflächenkonditionierungsverfahrens (Airsonic Mini Sandblaster®) in der Klebebrückentechnik / Comparative Studies on the Applicability of a New Surface Conditioning System (Airsonic Mini Sandblaster®) in Adhesive Bridging Technic , 2004, Biomedizinische Technik. Biomedical engineering.

[35]  Byron M. Yu,et al.  A high-performance brain–computer interface , 2006, Nature.