Integrating contrastive learning with dynamic models for reinforcement learning from images

[1]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[2]  Jan Peters,et al.  Stable reinforcement learning with autoencoders for tactile and visual data , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Jimmy Ba,et al.  Dream to Control: Learning Behaviors by Latent Imagination , 2019, ICLR.

[4]  Anind K. Dey,et al.  Maximum Entropy Inverse Reinforcement Learning , 2008, AAAI.

[5]  S. Levine,et al.  Learning Invariant Representations for Reinforcement Learning without Reconstruction , 2020, ICLR.

[6]  Meng Wei,et al.  Robot skill acquisition in assembly process using deep reinforcement learning , 2019, Neurocomputing.

[7]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[8]  Alexei A. Efros,et al.  Curiosity-Driven Exploration by Self-Supervised Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[9]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[10]  David Filliat,et al.  Deep unsupervised state representation learning with robotic priors: a robustness analysis , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[11]  Yoshua Bengio,et al.  Unsupervised State Representation Learning in Atari , 2019, NeurIPS.

[12]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[13]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[14]  Honglak Lee,et al.  Predictive Information Accelerates Learning in RL , 2020, NeurIPS.

[15]  Sergey Levine,et al.  EMI: Exploration with Mutual Information , 2018, ICML.

[16]  R. Fergus,et al.  Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels , 2020, ICLR.

[17]  Pieter Abbeel,et al.  CURL: Contrastive Unsupervised Representations for Reinforcement Learning , 2020, ICML.

[18]  Ali Farhadi,et al.  Target-driven visual navigation in indoor scenes using deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Sergey Levine,et al.  Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor , 2018, ICML.

[20]  Joelle Pineau,et al.  Independently Controllable Features , 2017 .

[21]  Joelle Pineau,et al.  Improving Sample Efficiency in Model-Free Reinforcement Learning from Images , 2019, AAAI.

[22]  Hang Su,et al.  Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction , 2020, Neurocomputing.

[23]  Jitendra Malik,et al.  Learning to Poke by Poking: Experiential Learning of Intuitive Physics , 2016, NIPS.

[24]  Sergey Levine,et al.  Deep visual foresight for planning robot motion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Ross B. Girshick,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Oliver Brock,et al.  State Representation Learning with Robotic Priors for Partially Observable Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Oriol Vinyals,et al.  Representation Learning with Contrastive Predictive Coding , 2018, ArXiv.

[28]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[29]  Martin A. Riedmiller,et al.  Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images , 2015, NIPS.

[30]  Xin Zhang,et al.  Random curiosity-driven exploration in deep reinforcement learning , 2020, Neurocomputing.

[31]  Yoshua Bengio,et al.  Mutual Information Neural Estimation , 2018, ICML.

[32]  Sergey Levine,et al.  Deep spatial autoencoders for visuomotor learning , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Martin A. Riedmiller,et al.  Learn to Swing Up and Balance a Real Pole Based on Raw Visual Input Data , 2012, ICONIP.

[34]  Oliver Brock,et al.  Learning state representations with robotic priors , 2015, Auton. Robots.

[35]  Ian S. Fischer,et al.  The Conditional Entropy Bottleneck , 2020, Entropy.

[36]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[37]  Martin A. Riedmiller,et al.  PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations , 2017, ArXiv.

[38]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[39]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[40]  Sergey Levine,et al.  SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning , 2018, ICML.

[41]  Sergey Levine,et al.  Unsupervised Learning for Physical Interaction through Video Prediction , 2016, NIPS.

[42]  P. Cincotta,et al.  Conditional Entropy , 1999 .

[43]  Ruben Villegas,et al.  Learning Latent Dynamics for Planning from Pixels , 2018, ICML.