Geometric phase, quantum Fisher information, geometric quantum correlation and quantum phase transition in the cavity-Bose–Einstein-condensate system

We investigate the quantum phase transition of an atomic ensemble trapped in a single-mode optical cavity via the geometric phase and quantum Fisher information of an extra probe atom which is injected into the optical cavity and interacts with the cavity field. We also find that the geometric quantum correlation between two probe atoms exhibits a double sudden transition phenomenon and show this double sudden transition phenomenon is closely associated with the quantum phase transition of the atomic ensemble. Furthermore, we propose a theoretical scheme to prolong the frozen time during which the geometric quantum correlation remains constant by applying time-dependent electromagnetic field.

[1]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[2]  C. Helstrom Quantum detection and estimation theory , 1969 .

[3]  W. Wootters Statistical distance and Hilbert space , 1981 .

[4]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[5]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[7]  J. G. P. Faria,et al.  DISSIPATIVE DYNAMICS OF THE JAYNES-CUMMINGS MODEL IN THE DISPERSIVE APPROXIMATION : ANALYTICAL RESULTS , 1999 .

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[9]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[10]  G. Agarwal,et al.  Strong-driving-assisted multipartite entanglement in cavity QED. , 2002, Physical review letters.

[11]  C. H. Oh,et al.  Kinematic approach to the mixed state geometric phase in nonunitary evolution. , 2004, Physical review letters.

[12]  C. H. Oh,et al.  Erratum: Kinematic Approach to the Mixed State Geometric Phase in Nonunitary Evolution [Phys. Rev. Lett. 93, 080405 (2004)] , 2005 .

[13]  X. Yi,et al.  Geometric phases induced in auxiliary qubits by many-body systems near their critical points , 2007, quant-ph/0703049.

[14]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[15]  C. P. Sun,et al.  Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality , 2009, 0902.1575.

[16]  Jian Ma,et al.  Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model , 2009, 0905.0245.

[17]  J. Xu,et al.  Control of the entanglement of a two-level atom in a dissipative cavity via a classical field , 2009, 0906.1333.

[18]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[19]  S. Gu Fidelity approach to quantum phase transitions , 2008, 0811.3127.

[20]  D. Nagy,et al.  Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity. , 2009, Physical review letters.

[21]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[22]  Jian Ma,et al.  Fisher information in a quantum-critical environment , 2010 .

[23]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[24]  P. I. Villar,et al.  Geometric phases in the presence of a composite environment , 2011, 1104.5649.

[25]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[26]  D. Stamper-Kurn,et al.  Optical detection of the quantization of collective atomic motion. , 2011, Physical review letters.

[27]  Xiu-xing Zhang,et al.  Detecting the multi-spin interaction of an XY spin chain by the geometric phase of a coupled qubit , 2012 .

[28]  L. Kuang,et al.  Quantum-discord amplification induced by a quantum phase transition via a cavity–Bose-Einstein-condensate system , 2012, 1208.2776.

[29]  A. Zhang,et al.  Geometric phase of a central qubit coupled to a spin chain in a thermal equilibrium state , 2013 .

[30]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[31]  I. A. Silva,et al.  Observation of environment-induced double sudden transitions in geometric quantum correlations. , 2013, Physical review letters.

[32]  F. M. Paula,et al.  Geometric classical and total correlations via trace distance , 2013, 1307.3579.

[33]  Wan-Fang Liu,et al.  Quantum Fisher information and spin squeezing in the ground state of the XY model , 2013 .

[34]  F. M. Paula,et al.  One-norm geometric quantum discord under decoherence , 2013, 1303.5110.

[35]  D. Spehner,et al.  Geometric quantum discord with Bures distance , 2013, 1304.3334.

[36]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[37]  G. Adesso,et al.  Hierarchy and dynamics of trace distance correlations , 2013, 1307.3953.

[38]  J. Xu,et al.  Trace distance and scaling behavior of a coupled cavity lattice at finite temperature , 2013, 1609.01833.

[39]  F. Nori,et al.  Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.

[40]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[41]  C. Sabín,et al.  Impurities as a quantum thermometer for a Bose-Einstein condensate , 2013, Scientific Reports.

[42]  George Rajna Quantum Phase Transition , 2016 .