Neuronal spiking activity highlights a gradient of epileptogenicity in human tuberous sclerosis lesions

[1]  Pierre Yger,et al.  A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo , 2018, eLife.

[2]  S. Charpier,et al.  Single‐unit activities during the transition to seizures in deep mesial structures , 2017, Annals of neurology.

[3]  Matthias Dümpelmann,et al.  How to record high‐frequency oscillations in epilepsy: A practical guideline , 2017, Epilepsia.

[4]  Fabrice Wendling,et al.  Defining epileptogenic networks: Contribution of SEEG and signal analysis , 2017, Epilepsia.

[5]  Simon J. Vogrin,et al.  Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. , 2016, Brain : a journal of neurology.

[6]  John C. Mosher,et al.  Time-Frequency Strategies for Increasing High-Frequency Oscillation Detectability in Intracerebral EEG , 2016, IEEE Transactions on Biomedical Engineering.

[7]  S. Warfield,et al.  Tubers are neither static nor discrete , 2015, Neurology.

[8]  J. González-Martínez,et al.  Resective Epilepsy Surgery for Tuberous Sclerosis in Children: Determining Predictors of Seizure Outcomes in a Multicenter Retrospective Cohort Study. , 2015, Neurosurgery.

[9]  P. Crino,et al.  Epileptogenic but MRI-normal perituberal tissue in Tuberous Sclerosis Complex contains tuber-specific abnormalities , 2015, Acta neuropathologica communications.

[10]  Jeffery A. Hall,et al.  Pathologic substrates of focal epilepsy influence the generation of high‐frequency oscillations , 2015, Epilepsia.

[11]  B. Colombet,et al.  AnyWave: A cross-platform and modular software for visualizing and processing electrophysiological signals , 2015, Journal of Neuroscience Methods.

[12]  Ayako Ochi,et al.  Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex , 2014, Epilepsia.

[13]  O. Devinsky,et al.  Developmental brain abnormalities in tuberous sclerosis complex: A comparative tissue analysis of cortical tubers and perituberal cortex , 2014, Epilepsia.

[14]  Pierre Yger,et al.  Neo: an object model for handling electrophysiology data in multiple formats , 2014, Front. Neuroinform..

[15]  Cathryn L. Kubera,et al.  A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits , 2013, International Journal of Developmental Neuroscience.

[16]  Michel Le Van Quyen,et al.  Single-unit activities during epileptic discharges in the human hippocampal formation , 2013, Front. Comput. Neurosci..

[17]  O. Devinsky,et al.  The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. , 2013, Journal of neurosurgery. Pediatrics.

[18]  G. Jackson,et al.  Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring , 2012, Neurology.

[19]  R. Kuzniecky,et al.  Electrocorticographic evidence of perituberal cortex epileptogenicity in tuberous sclerosis complex. , 2012, Journal of neurosurgery. Pediatrics.

[20]  Fabrice Wendling,et al.  Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes , 2012, Annals of neurology.

[21]  Eleonora Aronica,et al.  Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex , 2012, Acta Neuropathologica.

[22]  J. Jefferys,et al.  High‐frequency oscillations as a new biomarker in epilepsy , 2012, Annals of neurology.

[23]  Asohan Amarasingham,et al.  Conditional modeling and the jitter method of spike resampling. , 2012, Journal of neurophysiology.

[24]  Daniel N Hill,et al.  Quality Metrics to Accompany Spike Sorting of Extracellular Signals , 2011, The Journal of Neuroscience.

[25]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[26]  Emery N Brown,et al.  Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. , 2010, Brain : a journal of neurology.

[27]  C. Bénar,et al.  Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on “false” ripples , 2010, Clinical Neurophysiology.

[28]  S. Camposano,et al.  The natural history of epilepsy in tuberous sclerosis complex , 2009, Epilepsia.

[29]  Mirela V. Simon,et al.  Are cortical tubers epileptogenic? Evidence from electrocorticography , 2009, Epilepsia.

[30]  C. Schroeder,et al.  Microphysiology of Epileptiform Activity in Human Neocortex , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[31]  P. Chauvel,et al.  Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. , 2008, Brain : a journal of neurology.

[32]  Jean Gotman,et al.  Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG‐fMRI , 2008, Epilepsia.

[33]  P. Kahane,et al.  La zone épileptogène , 2008 .

[34]  Charles B. Mikell,et al.  Tuberous sclerosis: A primary pathology of astrocytes? , 2008, Epilepsia.

[35]  D. Madhavan,et al.  Local epileptogenic networks in tuberous sclerosis complex: A case review , 2007, Epilepsy & Behavior.

[36]  A. V. van Huffelen,et al.  Epilepsy Surgery in Tuberous Sclerosis: A Systematic Review , 2007, Epilepsia.

[37]  Philippe Kahane,et al.  The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. , 2006, Epileptic disorders : international epilepsy journal with videotape.

[38]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[39]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[40]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[41]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[42]  J. Engel Excitation and Inhibition in Epilepsy , 1996, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[43]  G. Ojemann,et al.  Neurons in human epileptic cortex: Correlation between unit and EEG activity , 1982, Annals of neurology.

[44]  A. C. Webb,et al.  The correlation between discharge times of neighbouring neurons in isolated cerebral cortex , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  J. Gotman,et al.  Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. , 1976, Electroencephalography and clinical neurophysiology.

[46]  W. Grajkowska,et al.  Brain lesions in tuberous sclerosis complex. Review. , 2010, Folia neuropathologica.

[47]  Mark Laubach,et al.  Methods for studying functional interactions among neuronal populations. , 2009, Methods in molecular biology.

[48]  P Kahane,et al.  [The epileptogenic zone]. , 2008, Neuro-Chirurgie.

[49]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.