Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction

As the name suggests, multi-objective optimisation involves optimising a number of objectives simultaneously. The problem becomes challenging when the objectives are of conflicting characteristics to each other, that is, the optimal solution of an objective function is different from that of the other. In the course of solving such problems, with or without the presence of constraints, these problems give rise to a set of trade-off optimal solutions, popularly known as Pareto-optimal solutions. Because of the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms using a population approach in its search procedure. Starting with parameterised procedures in early 90s, the so-called evolutionary multi-objective optimisation (EMO) algorithms is now an established field of research and application with many dedicated texts and edited books, commercial softwares and numerous freely downloadable codes, a biannual conference series running successfully since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this chapter, we provide a brief introduction to its operating principles and outline the current research and application studies of evolutionary multi-objective optmisation (EMO).

[1]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[2]  Michael Emmerich,et al.  Metamodel Assisted Multiobjective Optimisation Strategies and their Application in Airfoil Design , 2004 .

[3]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[4]  Kalyanmoy Deb,et al.  Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding , 2007, EMO.

[5]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[6]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[7]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[8]  Kalyanmoy Deb,et al.  Finding trade-off solutions close to KKT points using evolutionary multi-objective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[9]  Kalyanmoy Deb,et al.  An Evolutionary Multi-objective Adaptive Meta-modeling Procedure Using Artificial Neural Networks , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[10]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[11]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[12]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[13]  E. Zitzler,et al.  Offline and Online Objective Reduction in Evolutionary Multiobjective Optimization Based on Objective Conflicts , 2007 .

[14]  Kalyanmoy Deb,et al.  Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms , 2003 .

[15]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[16]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[17]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[18]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[19]  Carlos M. Fonseca,et al.  Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function , 2005, EMO.

[20]  Karl-Heinz Waldmann,et al.  Operations Research Proceedings 2006 , 2007 .

[21]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[22]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[23]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[24]  Eckart Zitzler,et al.  Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem , 2006, OR.

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications (Natural Computing Series) , 2008 .

[27]  Thomas Jansen On the utility of populations , 2004 .

[28]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[29]  Kalyanmoy Deb,et al.  Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique , 2011 .

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[31]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[32]  C. G. Sauer OPTIMIZATION OF MULTIPLE TARGET ELECTRIC PROPULSION TRAJECTORIES , 1973 .

[33]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[34]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[35]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[36]  Lothar Thiele,et al.  Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization , 2003 .

[37]  K. Deb,et al.  Optimal Scheduling of Casting Sequence Using Genetic Algorithms , 2003 .

[38]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[39]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[40]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[41]  Kalyanmoy Deb,et al.  Deciphering innovative principles for optimal electric brushless D.C. permanent magnet motor design , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[43]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[44]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications , 2008, Natural Computing Series.

[45]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[46]  Kalyanmoy Deb,et al.  Reliability-Based Optimization Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[47]  K. Deb,et al.  On Finding Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems , 2022 .

[48]  Eckart Zitzler,et al.  Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .

[49]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[50]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[51]  大林 茂 Evolutionary Multi-Criterion Optimization : 4th International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007 : proceedings , 2007 .

[52]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[53]  Kalyanmoy Deb,et al.  Computationally effective search and optimization procedure using coarse to fine approximations , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[54]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[55]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[56]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[57]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[58]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[59]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[60]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[61]  Kalyanmoy Deb,et al.  A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach , 2010, IEEE Congress on Evolutionary Computation.

[62]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[63]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[64]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[65]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[66]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[67]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.

[68]  Alden H. Wright,et al.  Implicit Parallelism , 2003, GECCO.

[69]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[70]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[71]  Eckart Zitzler,et al.  Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005, Guanajuato, Mexico, March 9-11, 2005, Proceedings , 2005, EMO.

[72]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[73]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[74]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[75]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[76]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[77]  Thomas A. Cruse,et al.  Reliability-Based Mechanical Design , 1997 .