Active tactile object exploration with Gaussian processes

Accurate object shape knowledge provides important information for performing stable grasping and dexterous manipulation. When modeling an object using tactile sensors, touching the object surface at a fixed grid of points can be sample inefficient. In this paper, we present an active touch strategy to efficiently reduce the surface geometry uncertainty by leveraging a probabilistic representation of object surface. In particular, we model the object surface using a Gaussian process and use the associated uncertainty information to efficiently determine the next point to explore. We validate the resulting method for tactile object surface modeling using a real robot to reconstruct multiple, complex object surfaces.

[1]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[2]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[3]  Peter K. Allen,et al.  Acquisition and interpretation of 3-D sensor data from touch , 1990, IEEE Trans. Robotics Autom..

[4]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[6]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[7]  Mark R. Cutkosky,et al.  Dynamic tactile sensing: perception of fine surface features with stress rate sensing , 1993, IEEE Trans. Robotics Autom..

[8]  Vladimir J. Lumelsky,et al.  Multi-finger "hugging": a robust approach to sensor-based grasp planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[10]  D. Dennis,et al.  SDO : A Statistical Method for Global Optimization , 1997 .

[11]  Claudio Melchiorri,et al.  Slip detection and control using tactile and force sensors , 2000 .

[12]  Mark Moll,et al.  Reconstructing shape from motion using tactile sensors , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[13]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Nando de Freitas,et al.  Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2007, Robotics: Science and Systems.

[15]  Tamim Asfour,et al.  A potential field approach to dexterous tactile exploration of unknown objects , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[16]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[17]  Yan-Bin Jia,et al.  Surface Patch Reconstruction From “One-Dimensional” Tactile Data , 2010, IEEE Transactions on Automation Science and Engineering.

[18]  Kaspar Althoefer,et al.  Tactile sensing for dexterous in-hand manipulation in robotics-A review , 2011 .

[19]  Shuzhi Sam Ge,et al.  Artificial Skin Ridges Enhance Local Tactile Shape Discrimination , 2011, Sensors.

[20]  Helge J. Ritter,et al.  A Probabilistic Approach to Tactile Shape Reconstruction , 2011, IEEE Transactions on Robotics.

[21]  Marc Toussaint,et al.  Gaussian process implicit surfaces for shape estimation and grasping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[22]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[23]  J. A. Fishel,et al.  Sensing tactile microvibrations with the BioTac — Comparison with human sensitivity , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[24]  Goro Obinata,et al.  Vision-Based Tactile Sensing and Shape Estimation Using a Fluid-Type Touchpad , 2012, IEEE Transactions on Automation Science and Engineering.

[25]  B. Siciliano,et al.  Visual Grasp Planning for Unknown Objects Using a Multifingered Robotic Hand , 2013, IEEE/ASME Transactions on Mechatronics.

[26]  Danica Kragic,et al.  Enhancing visual perception of shape through tactile glances , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Marc Toussaint,et al.  Uncertainty aware grasping and tactile exploration , 2013, 2013 IEEE International Conference on Robotics and Automation.

[28]  Jeannette Bohg,et al.  Fusing visual and tactile sensing for 3-D object reconstruction while grasping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[29]  Abdeslam Boularias,et al.  Efficient Optimization for Autonomous Robotic Manipulation of Natural Objects , 2014, AAAI.

[30]  Gerald E. Loeb,et al.  Multimodal Tactile Sensor , 2014, The Human Hand as an Inspiration for Robot Hand Development.

[31]  Edward H. Adelson,et al.  Localization and manipulation of small parts using GelSight tactile sensing , 2014, IROS.

[32]  Jean-Yves Fourniols,et al.  Wearable multi-sensor system for embedded body position and motion analysis during cycling View publication stats View publication stats , 2014 .

[33]  Ravi Balasubramanian,et al.  The Human Hand as an Inspiration for Robot Hand Development , 2014, Springer Tracts in Advanced Robotics.

[34]  Jan Peters,et al.  Bayesian optimization for learning gaits under uncertainty , 2015, Annals of Mathematics and Artificial Intelligence.

[35]  Jan Peters,et al.  Evaluation of tactile feature extraction for interactive object recognition , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).