Estimation of ECHAM5 climate model closure parameters with adaptive MCMC

Abstract. Climate models contain closure parameters to which the model climate is sensitive. These parameters appear in physical parameterization schemes where some unresolved variables are expressed by predefined parameters rather than being explicitly modeled. Currently, best expert knowledge is used to define the optimal closure parameter values, based on observations, process studies, large eddy simulations, etc. Here, parameter estimation, based on the adaptive Markov chain Monte Carlo (MCMC) method, is applied for estimation of joint posterior probability density of a small number (n=4) of closure parameters appearing in the ECHAM5 climate model. The parameters considered are related to clouds and precipitation and they are sampled by an adaptive random walk process of the MCMC. The parameter probability densities are estimated simultaneously for all parameters, subject to an objective function. Five alternative formulations of the objective function are tested, all related to the net radiative flux at the top of the atmosphere. Conclusions of the closure parameter estimation tests with a low-resolution ECHAM5 climate model indicate that (i) adaptive MCMC is a viable option for parameter estimation in large-scale computational models, and (ii) choice of the objective function is crucial for the identifiability of the parameter distributions.

[1]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[2]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[3]  Estimation of the Cressman Term for a Barotropic Model through Optimization with Use of the Adjoint Model , 1993 .

[4]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[5]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[6]  J. Liski,et al.  Leaf litter decomposition-Estimates of global variability based on Yasso07 model , 2009, 0906.0886.

[7]  H. Haario,et al.  Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .

[8]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[9]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[10]  Erkki Oja,et al.  Exploratory analysis of climate data using source separation methods , 2006, Neural Networks.

[11]  J. Liski,et al.  Leaf litter decomposition — Estimates of global variability based on Yasso 07 model , 2009 .

[12]  Mrinal K. Sen,et al.  Error Reduction and Convergence in Climate Prediction , 2008 .

[13]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[14]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[15]  Luis Kornblueh,et al.  Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model , 2006 .

[16]  Mrinal K. Sen,et al.  Computational methods for parameter estimation in climate models , 2008 .

[17]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[18]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[19]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[20]  Heikki Haario,et al.  Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..

[21]  J D Annan,et al.  Efficient estimation and ensemble generation in climate modelling , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[23]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP) Web Site An Online Resource for Research , 2004 .

[24]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .