III-Posed problems early vision: from computational theory to analogue networks

We outline a theoretical framework that leads from the computational nature of early vision to algorithms for solving them and finally to a specific class of analogue and parallel hardware for the efficient solution of these algorithms. The common computational structure of many early vision problems is that they are mathematically ill-posed in the sense of Hadamard. Regularization analysis can be used to solve them in terms of variational principles of a specific type that enforce constraints derived from a physical analysis of the problem. Studies of human perception may reveal whether principles of a similar type are exploited by biological vision. We also show that the corresponding variational principles can be implemented in a natural way by analogue networks. Specific electrical and chemical networks for localizing edges and computing visual motion are derived. We suggest that local circuits of neurons may exploit this unconventional model of computation.

[1]  Gabriel Kron,et al.  Electric Circuit Models of the Schrödinger Equation , 1945 .

[2]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  W. Karplus,et al.  Analog simulation : solution of field problems , 1961 .

[5]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[6]  E. H. Mansfield The Bending and Stretching of Plates , 1963 .

[7]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[8]  C. Reinsch Smoothing by spline functions , 1967 .

[9]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[10]  Benjamin C. Kuo,et al.  Linear networks and systems , 1967 .

[11]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[12]  A. G. J. MacFarlane,et al.  Dynamical system models , 1970 .

[13]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[14]  C. Desoer,et al.  Tellegen's theorem and thermodynamic inequalities. , 1971, Journal of theoretical biology.

[15]  H. Busse,et al.  Information Transmission in a Diffusion-Coupled Oscillatory Chemical System , 1973, Nature.

[16]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[17]  M. Nashed Approximate regularized solutions to improperly posed linear integral and operator equations , 1974 .

[18]  P. Dev,et al.  Electrotonic processing of information by brain cells. , 1976, Science.

[19]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[20]  JOHN W. Moore Membranes, ions, and impulses , 1976 .

[21]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[22]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[23]  Shimon Ullman,et al.  Relaxation and constrained optimization by local processes , 1979 .

[24]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  G. Shepherd,et al.  Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb , 1979, Brain Research.

[26]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  W. Eric L. Grimson,et al.  Shape Encoding and Subjective Contours , 1980, AAAI.

[28]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  G. Wahba Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems with Noisy Data. , 1980 .

[30]  S. Ellias,et al.  The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells? , 1980, Brain Research.

[31]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[32]  Harry G. Barrow,et al.  Interpreting Line Drawings as Three-Dimensional Surfaces , 1980, Artif. Intell..

[33]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[34]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[35]  W E Grimson,et al.  A computer implementation of a theory of human stereo vision. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  W E Grimson,et al.  A computational theory of visual surface interpolation. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[38]  Alan L. Yuille,et al.  The Smoothest Velocity Field and Token Matching , 1983 .

[39]  J. Canny Finding Edges and Lines in Images , 1983 .

[40]  T. Poggio,et al.  A theoretical analysis of electrical properties of spines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Marroquín Surface Reconstruction Preserving Discontinuities , 1984 .

[45]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  T. Poggio,et al.  Associative Learning of Standard Regularizing Operators in Early Vision , 1984 .

[47]  H. K. Nishihara,et al.  PRISM: A Practical Mealtime Imaging Stereo Matcher , 1984, Other Conferences.

[48]  T. Poggio,et al.  Ill-Posed Problems and Regularization Analysis in Early Vision , 1984 .

[49]  E. Hildreth The computation of the velocity field , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  F. O. Schmitt,et al.  Molecular regulators of brain function: A new view , 1984, Neuroscience.

[51]  H. K. Nishihara,et al.  Practical Real-Time Imaging Stereo Matcher , 1984 .

[52]  Alan L. Yuille,et al.  An Extremum Principle for Shape from Contour , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  E. Marder Mechanisms underlying neurotransmitter modulation of a neuronal circuit , 1984, Trends in Neurosciences.

[54]  Andrew Blake,et al.  Reconstructing a Visible Surface , 1984, AAAI.

[55]  T. Poggio,et al.  Biophysics of Computation: Neurons, Synapses and Membranes , 1984 .

[56]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[57]  Alan L. Yuille The Smoothest Velocity Field Token Matching Schemes , 1984, ECAI.

[58]  Tomaso Poggio,et al.  An Analog Model of Computation for the Ill-Posed Problems of Early Vision, , 1984 .

[59]  Andrew Blake,et al.  Parallel computation in low-level vision , 1984 .

[60]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[61]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.