Importance of Feature Selection in Machine Learning and Adaptive Design for Materials

[1]  T. White,et al.  Structural derivation and crystal chemistry of apatites. , 2003, Acta crystallographica. Section B, Structural science.

[2]  T. White,et al.  Geometrical parameterization of the crystal chemistry of P6(3)/m apatites: comparison with experimental data and ab initio results. , 2005, Acta crystallographica. Section B, Structural science.

[3]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[4]  Krishna Rajan,et al.  Electronically driven structural transitions in A10(PO4)6F2 apatites (A = Ca, Sr, Pb, Cd and Hg). , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[5]  Edward R. Dougherty,et al.  Optimal experimental design for materials discovery , 2017 .

[6]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Harold T. Stokes,et al.  FINDSYM: program for identifying the space‐group symmetry of a crystal , 2005 .

[8]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[9]  Turab Lookman,et al.  Learning from data to design functional materials without inversion symmetry , 2017, Nature Communications.

[10]  Tarak K Patra,et al.  Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn. , 2017, ACS combinatorial science.

[11]  Mingli Yang,et al.  Electronic, vibrational and thermodynamic properties of Ca10(AsO4)6(OH)2: first principles study , 2015 .

[12]  David P Mackinnon,et al.  Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods , 2004, Multivariate behavioral research.

[13]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[14]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Rajarshi Guha,et al.  Structure-Activity Landscape Index: Identifying and Quantifying Activity Cliffs , 2008, J. Chem. Inf. Model..

[16]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[17]  James Theiler,et al.  Adaptive Strategies for Materials Design using Uncertainties , 2016, Scientific Reports.

[18]  Chiho Kim,et al.  From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown , 2016 .

[19]  T. Lookman,et al.  Structure–Curie temperature relationships in BaTiO 3 -based ferroelectric perovskites: Anomalous behavior of ( Ba , Cd ) TiO 3 from DFT, statistical inference, and experiments , 2016 .

[20]  Jun Sun,et al.  An informatics approach to transformation temperatures of NiTi-based shape memory alloys , 2017 .

[21]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[22]  José L. Medina-Franco,et al.  Scanning Structure-Activity Relationships with Structure-Activity Similarity and Related Maps: From Consensus Activity Cliffs to Selectivity Switches , 2012, J. Chem. Inf. Model..

[23]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[24]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[25]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[26]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[27]  B. Uberuaga,et al.  Using Machine Learning To Identify Factors That Govern Amorphization of Irradiated Pyrochlores , 2016, 1607.06789.

[28]  Atsuto Seko,et al.  Representation of compounds for machine-learning prediction of physical properties , 2016, 1611.08645.

[29]  Koji Tsuda,et al.  COMBO: An efficient Bayesian optimization library for materials science , 2016 .

[30]  Jean Kim,et al.  Apatite - An Adaptive Framework Structure , 2005 .

[31]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[32]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[34]  Krishna Rajan,et al.  Structure maps for A(I)4A(II)6(BO4)6X2 apatite compounds via data mining. , 2012, Acta crystallographica. Section B, Structural science.

[35]  James Theiler,et al.  Materials Prediction via Classification Learning , 2015, Scientific Reports.

[36]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[37]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[38]  Maykel Cruz-Monteagudo,et al.  Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? , 2014, Drug discovery today.

[39]  Xiaoning Qian,et al.  Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning , 2016, Proceedings of the National Academy of Sciences.

[40]  J. Hogden,et al.  Statistical inference and adaptive design for materials discovery , 2017 .

[41]  I. Steinbach Phase-field models in materials science , 2009 .

[42]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.